期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Investigating jet physical properties of Fermi blazars with broad-line emissions
1
作者 Lixia Zhang Jianghe Yang +1 位作者 Yi Liu Junhui Fan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第10期138-154,共17页
Relativistic outflows often exhibit extreme observational characteristics due to beaming effects, which makes measuring their jet power a challenging task. Although the spectral energy distribution(SED) obtained from ... Relativistic outflows often exhibit extreme observational characteristics due to beaming effects, which makes measuring their jet power a challenging task. Although the spectral energy distribution(SED) obtained from multi-wavelength data can constrain the physical parameters of these jets, accurately estimating the Doppler factor remains difficult. To address this challenge, we assemble a comprehensive sample containing available SEDs of synchrotron and inverse Compton(IC) components, monochromatic luminosity, and broad-line region(BLR) emissions. We employ a parabolic equation to fit the synchrotron radiation SEDs,constraining jet physical parameters within the framework of a one-zone leptonic model. Our study delves into the jet properties and Doppler factor estimations, yielding the following key findings:(1) The fitting results of SED data for the entire sample reveal normal distributions of jet physical parameters for two subclasses of blazars.(2) Correlation analysis demonstrates that synchrotron peak luminosity exhibits a proportional relationship with both the radio and the γ-ray luminosities.(3) We introduce a novel method for estimating Doppler factors, which uncovers discrepancies between Doppler factors from this work and others from different techniques. 展开更多
关键词 active galactic nuclei BLAZARS jets spectral energy distribution
原文传递
Estimation of inverse Compton peak frequency for 4FGL Blazars
2
作者 JiangHe Yang JunHui Fan +10 位作者 Yi Liu ManXian Tuo ZhiYuan Pei WenXin Yang YuHai Yuan SiLe He ShengHui Wang XiaoHai Qu YueLian Zhang JianJun Nie XiuHui Chen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第4期142-157,共16页
This study uses a parabolic equation to fit the Inverse Compton (IC) spectral component of 3743 blazars (794 FSRQs,1432 BLLacs,and 1517 BCUs) from the 4FGL-DR3 catalog.Some mutual correlations are investigated,and a B... This study uses a parabolic equation to fit the Inverse Compton (IC) spectral component of 3743 blazars (794 FSRQs,1432 BLLacs,and 1517 BCUs) from the 4FGL-DR3 catalog.Some mutual correlations are investigated,and a Bayesian classification is performed to the IC peak frequencies.Our analyses draw the following conclusions:(1) The Bayesian classification shows two components with a dividing boundary of log(v_(p)^(IC)/Hz)pIC=22.9.Therefore,the 3743 blazars are divided into low IC peak frequency(LCP) blazars and high IC peak frequency (HCP) blazars.(2) A strong linear correlation exists between IC peak frequency(logv_(p)^(IC)) and γ-ray photon spectral index (Γ).The IC peak frequency can be estimated by an empirical relation logv_(p)^(IC)=–4.5·Γ+32.8 for BL Lacs and logv_(p)^(IC)=4.0+31.4pICfor FSRQs,which is consistent with the result by Abdo et al.(3) The ICspectral curvature and IC peak frequency are not as closely related as the synchrotron curvature and the synchrotron peak frequency.(4) An anti-correlation exists between IC peak frequency and IC peak luminosity,implying that as the IC peak frequency in the γ-ray band decreases,the source becomes more luminous.The beaming effect is stronger for the source with a lower IC peak frequency.(5) Positive correlations exist between IC and synchrotron components for both peak frequencies and peak fluxes,but no clear correlation exists between IC curvature and synchrotron curvature. 展开更多
关键词 active galactic nuclei Fermi blazars spectral energy distribution inverse Compton emission
原文传递
Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle 被引量:5
3
作者 F.Aharonian Q.An +257 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.D'Ettorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi B.Q.Qiao D.Ruffolo V.Rulev A.Saiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2021年第8期166-181,共16页
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ... The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories. 展开更多
关键词 LHAASO-WCDA Crab Nebula angular resolution spectral energy distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部