期刊文献+
共找到339篇文章
< 1 2 17 >
每页显示 20 50 100
Rock mass quality classification based on deep learning:A feasibility study for stacked autoencoders 被引量:2
1
作者 Danjie Sheng Jin Yu +3 位作者 Fei Tan Defu Tong Tianjun Yan Jiahe Lv 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1749-1758,共10页
Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep... Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation. 展开更多
关键词 Rock mass quality classification Deep learning stacked autoencoder(sae) Back propagation algorithm
下载PDF
Iterative learning-based many-objective history matching using deep neural network with stacked autoencoder 被引量:2
2
作者 Jaejun Kim Changhyup Park +3 位作者 Seongin Ahn Byeongcheol Kang Hyungsik Jung Ilsik Jang 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1465-1482,共18页
This paper presents an innovative data-integration that uses an iterative-learning method,a deep neural network(DNN)coupled with a stacked autoencoder(SAE)to solve issues encountered with many-objective history matchi... This paper presents an innovative data-integration that uses an iterative-learning method,a deep neural network(DNN)coupled with a stacked autoencoder(SAE)to solve issues encountered with many-objective history matching.The proposed method consists of a DNN-based inverse model with SAE-encoded static data and iterative updates of supervised-learning data are based on distance-based clustering schemes.DNN functions as an inverse model and results in encoded flattened data,while SAE,as a pre-trained neural network,successfully reduces dimensionality and reliably reconstructs geomodels.The iterative-learning method can improve the training data for DNN by showing the error reduction achieved with each iteration step.The proposed workflow shows the small mean absolute percentage error below 4%for all objective functions,while a typical multi-objective evolutionary algorithm fails to significantly reduce the initial population uncertainty.Iterative learning-based manyobjective history matching estimates the trends in water cuts that are not reliably included in dynamicdata matching.This confirms the proposed workflow constructs more plausible geo-models.The workflow would be a reliable alternative to overcome the less-convergent Pareto-based multi-objective evolutionary algorithm in the presence of geological uncertainty and varying objective functions. 展开更多
关键词 Deep neural network stacked autoencoder History matching Iterative learning CLUSTERING Many-objective
下载PDF
Optimized Stacked Autoencoder for IoT Enabled Financial Crisis Prediction Model 被引量:2
3
作者 Mesfer Al Duhayyim Hadeel Alsolai +5 位作者 Fahd N.Al-Wesabi Nadhem Nemri Hany Mahgoub Anwer Mustafa Hilal Manar Ahmed Hamza Mohammed Rizwanullah 《Computers, Materials & Continua》 SCIE EI 2022年第4期1079-1094,共16页
Recently,Financial Technology(FinTech)has received more attention among financial sectors and researchers to derive effective solutions for any financial institution or firm.Financial crisis prediction(FCP)is an essen... Recently,Financial Technology(FinTech)has received more attention among financial sectors and researchers to derive effective solutions for any financial institution or firm.Financial crisis prediction(FCP)is an essential topic in business sector that finds it useful to identify the financial condition of a financial institution.At the same time,the development of the internet of things(IoT)has altered the mode of human interaction with the physical world.The IoT can be combined with the FCP model to examine the financial data from the users and perform decision making process.This paper presents a novel multi-objective squirrel search optimization algorithm with stacked autoencoder(MOSSA-SAE)model for FCP in IoT environment.The MOSSA-SAE model encompasses different subprocesses namely preprocessing,class imbalance handling,parameter tuning,and classification.Primarily,the MOSSA-SAE model allows the IoT devices such as smartphones,laptops,etc.,to collect the financial details of the users which are then transmitted to the cloud for further analysis.In addition,SMOTE technique is employed to handle class imbalance problems.The goal of MOSSA in SMOTE is to determine the oversampling rate and area of nearest neighbors of SMOTE.Besides,SAE model is utilized as a classification technique to determine the class label of the financial data.At the same time,the MOSSA is applied to appropriately select the‘weights’and‘bias’values of the SAE.An extensive experimental validation process is performed on the benchmark financial dataset and the results are examined under distinct aspects.The experimental values ensured the superior performance of the MOSSA-SAE model on the applied dataset. 展开更多
关键词 Financial data financial crisis prediction class imbalance problem internet of things stacked autoencoder
下载PDF
Software Defect Prediction Based on Stacked Contractive Autoencoder and Multi-Objective Optimization 被引量:2
4
作者 Nana Zhang Kun Zhu +1 位作者 Shi Ying Xu Wang 《Computers, Materials & Continua》 SCIE EI 2020年第10期279-308,共30页
Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mos... Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mostly regard software defect prediction as a single objective optimization problem,and multi-objective software defect prediction has not been thoroughly investigated.For the above two reasons,we propose the following solutions in this paper:(1)we leverage an advanced deep neural network-Stacked Contractive AutoEncoder(SCAE)to extract the robust deep semantic features from the original defect features,which has stronger discrimination capacity for different classes(defective or non-defective).(2)we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize the advanced neural network-Extreme learning machine(ELM)based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE.We mainly consider two objectives.One objective is to maximize the performance of ELM,which refers to the benefit of the SMONGE model.Another objective is to minimize the output weight norm of ELM,which is related to the cost of the SMONGE model.We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE model without SCAE across 20 open source software projects.The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics. 展开更多
关键词 Software defect prediction deep neural network stacked contractive autoencoder multi-objective optimization extreme learning machine
下载PDF
Novel Ensemble Modeling Method for Enhancing Subset Diversity Using Clustering Indicator Vector Based on Stacked Autoencoder 被引量:1
5
作者 Yanzhen Wang Xuefeng Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第10期123-144,共22页
A single model cannot satisfy the high-precision prediction requirements given the high nonlinearity between variables.By contrast,ensemble models can effectively solve this problem.Three key factors for improving the... A single model cannot satisfy the high-precision prediction requirements given the high nonlinearity between variables.By contrast,ensemble models can effectively solve this problem.Three key factors for improving the accuracy of ensemble models are namely the high accuracy of a submodel,the diversity between subsample sets and the optimal ensemble method.This study presents an improved ensemble modeling method to improve the prediction precision and generalization capability of the model.Our proposed method first uses a bagging algorithm to generate multiple subsample sets.Second,an indicator vector is defined to describe these subsample sets.Third,subsample sets are selected on the basis of the results of agglomerative nesting clustering on indicator vectors to maximize the diversity between subsets.Subsequently,these subsample sets are placed in a stacked autoencoder for training.Finally,XGBoost algorithm,rather than the traditional simple average ensemble method,is imported to ensemble the model during modeling.Three machine learning public datasets and atmospheric column dry point dataset from a practical industrial process show that our proposed method demonstrates high precision and improved prediction ability. 展开更多
关键词 ENSEMBLE model deep learning BAGGING stacked autoencoder XGBoost
下载PDF
Hybrid Image Compression-Encryption Scheme Based on Multilayer Stacked Autoencoder and Logistic Map 被引量:1
6
作者 Neetu Gupta Ritu Vijay 《China Communications》 SCIE CSCD 2022年第1期238-252,共15页
Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is propos... Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission.. 展开更多
关键词 compression-encryption stacked autoencoder chaotic system back propagation algorithm logistic map
下载PDF
Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed 被引量:1
7
作者 Neelam Mughees Mujtaba Hussain Jaffery +2 位作者 Abdullah Mughees Anam Mughees Krzysztof Ejsmont 《Computers, Materials & Continua》 SCIE EI 2023年第6期6375-6393,共19页
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h... Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting. 展开更多
关键词 Deep stacked autoencoder sequence to sequence autoencoder bidirectional long short-term memory network wind speed forecasting solar irradiation forecasting
下载PDF
Data Cleaning Based on Stacked Denoising Autoencoders and Multi-Sensor Collaborations 被引量:1
8
作者 Xiangmao Chang Yuan Qiu +1 位作者 Shangting Su Deliang Yang 《Computers, Materials & Continua》 SCIE EI 2020年第5期691-703,共13页
Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been prop... Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach. 展开更多
关键词 Data cleaning wireless sensor networks stacked denoising autoencoders multi-sensor collaborations
下载PDF
Pseudo Zernike Moment and Deep Stacked Sparse Autoencoder for COVID-19 Diagnosis 被引量:1
9
作者 Yu-Dong Zhang Muhammad Attique Khan +1 位作者 Ziquan Zhu Shui-Hua Wang 《Computers, Materials & Continua》 SCIE EI 2021年第12期3145-3162,共18页
(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic s... (Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic smart diagnosis.(Method)This study aims to propose a novel deep learning method that can obtain better performance.We use the pseudo-Zernike moment(PZM),derived from Zernike moment,as the extracted features.Two settings are introducing:(i)image plane over unit circle;and(ii)image plane inside the unit circle.Afterward,we use a deep-stacked sparse autoencoder(DSSAE)as the classifier.Besides,multiple-way data augmentation is chosen to overcome overfitting.The multiple-way data augmentation is based on Gaussian noise,salt-and-pepper noise,speckle noise,horizontal and vertical shear,rotation,Gamma correction,random translation and scaling.(Results)10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06%±1.54%,a specificity of 92.56%±1.06%,a precision of 92.53%±1.03%,and an accuracy of 92.31%±1.08%.Its F1 score,MCC,and FMI arrive at 92.29%±1.10%,84.64%±2.15%,and 92.29%±1.10%,respectively.The AUC of our model is 0.9576.(Conclusion)We demonstrate“image plane over unit circle”can get better results than“image plane inside a unit circle.”Besides,this proposed PZM-DSSAE model is better than eight state-of-the-art approaches. 展开更多
关键词 Pseudo Zernike moment stacked sparse autoencoder deep learning COVID-19 multiple-way data augmentation medical image analysis
下载PDF
Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders 被引量:2
10
作者 Samah Ibrahim Alshathri Desiree Juby Vincent V.S.Hari 《Computers, Materials & Continua》 SCIE EI 2022年第4期1371-1386,共16页
Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In ... Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In this paper,letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method.A stacked denoising autoencoder(SDAE)is implemented with two hidden layers each in encoder network and decoder network.In order to capture the most salient features of training samples,a undercomplete autoencoder is designed with non-linear encoder and decoder function.This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy.A dataset consisting of 59,119 letter images,which contains both English alphabets(upper and lower case)and numbers(0 to 9)is prepared from many scanned invoices images and windows true type(.ttf)files,are used for training the neural network.Performance is analyzed in terms of Signal to Noise Ratio(SNR),Peak Signal to Noise Ratio(PSNR),Structural Similarity Index(SSIM)and Universal Image Quality Index(UQI)and compared with other filtering techniques like Nonlocal Means filter,Anisotropic diffusion filter,Gaussian filters and Mean filters.Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values.Results show the superior performance of proposed SDAE method. 展开更多
关键词 stacked denoising autoencoder(SDAE) optical character recognition(OCR) signal to noise ratio(SNR) universal image quality index(UQ1)and structural similarity index(SSIM)
下载PDF
Automatic Detection of COVID-19 Using a Stacked Denoising Convolutional Autoencoder
11
作者 Habib Dhahri Besma Rabhi +3 位作者 Slaheddine Chelbi Omar Almutiry Awais Mahmood Adel M.Alimi 《Computers, Materials & Continua》 SCIE EI 2021年第12期3259-3274,共16页
The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic ... The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images.A stacked denoising convolutional autoencoder(SDCA)model was proposed to classify X-ray images into three classes:normal,pneumonia,and COVID-19.The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images.The proposed model’s architecture mainly composed of eight autoencoders,which were fed to two dense layers and SoftMax classifiers.The proposed model was evaluated with 6356 images from the datasets from different sources.The experiments and evaluation of the proposed model were applied to an 80/20 training/validation split and for five cross-validation data splitting,respectively.The metrics used for the SDCA model were the classification accuracy,precision,sensitivity,and specificity for both schemes.Our results demonstrated the superiority of the proposed model in classifying X-ray images with high accuracy of 96.8%.Therefore,this model can help physicians accelerate COVID-19 diagnosis. 展开更多
关键词 stacked autoencoder augmentation multiclassification COVID-19 convolutional neural network
下载PDF
Fault Diagnosis of Wind Turbine Generator with Stacked Noise Reduction Autoencoder Based on Group Normalization
12
作者 Sihua Wang Wenhui Zhang +2 位作者 Gaofei Zheng Xujie Li Yougeng Zhao 《Energy Engineering》 EI 2022年第6期2431-2445,共15页
In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA dat... In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA data of wind turbine operation,firstly,the group normalization(GN)algorithm is added to solve the problems of stack noise reduction autoencoding network training and slow convergence speed,and the RMSProp algorithm is used to update the weight and the bias of the autoenccoder,which further optimizes the problem that the loss function swings too much during the update process.Finally,in the last layer of the network,the softmax activation function is used to classify the results,and the output of the network is transformed into a probability distribution.The selected wind turbine SCADA data was substituted into the pre-improved and improved stacked denoising autoencoding(SDA)networks for comparative training and verification.The results show that the stacked denoising autoencoding network based on group normalization is more accurate and effective for wind turbine condition monitoring and fault diagnosis,and also provides a reference for wind turbine fault identification. 展开更多
关键词 Wind farm wind turbine group normalization stack noise reduction autoencoding fault diagnosis
下载PDF
基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法
13
作者 朱亮 李晓明 +1 位作者 纪慧 楼一珊 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期39-46,64,共9页
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM... 在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析。结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE仅为0.081,平均绝对百分比误差MAPE为1.189,决定系数R^(2)为0.966,其RMSE和MAPE最小,R 2最大,较其他模型预测精度更高。该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题。 展开更多
关键词 深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 LSTM神经网络 深度学习
下载PDF
基于SAE和WGAN的入侵检测方法研究
14
作者 刘拥民 许成 +2 位作者 黄浩 张钱垒 赵俊杰 《计算机工程与科学》 北大核心 2025年第2期256-264,共9页
近年来,机器学习和深度学习(ML/DL)领域技术飞速发展,将其应用到IDS中的研究也越来越多。但是,目前入侵检测领域的数据集存在特征冗余和攻击分类样本数量不平衡的问题。针对上述问题,提出基于自编码器SAE和生成对抗网络WGAN的网络异常... 近年来,机器学习和深度学习(ML/DL)领域技术飞速发展,将其应用到IDS中的研究也越来越多。但是,目前入侵检测领域的数据集存在特征冗余和攻击分类样本数量不平衡的问题。针对上述问题,提出基于自编码器SAE和生成对抗网络WGAN的网络异常检测方法。首先,针对特征冗余问题,使用堆叠自编码器的编码-隐层-解码思想进行数据降维,细化各类特征,提取更适用于分类的低维度特征。其次,针对样本不平衡(数据量少、种类不多的)问题,将处理过的数据作为生成器的来源输入到WGAN模型中,利用生成对抗网络的生成功能进行样本扩充,弥补分类模型训练过程中某些类型样本数据不足的问题,最终通过RF分类模型进行检测。在数据集NSL-KDD上的实验结果表明,基于本文方法建立的模型SAE-WGAN-RF的F 1-Score为95.58%,Recall为96.54%,Precision为96.03%,相比常见的经典算法的性能有显著提高。 展开更多
关键词 深度学习 生成对抗网络 异常检测 栈式自编码器
下载PDF
Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System 被引量:3
15
作者 Thavavel Vaiyapuri Adel Binbusayyis 《Computers, Materials & Continua》 SCIE EI 2021年第9期3271-3288,共18页
In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owin... In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owing to the lack of accurately labeled network traffic data,many unsupervised feature representation learning models have been proposed with state-of-theart performance.Yet,these models fail to consider the classification error while learning the feature representation.Intuitively,the learnt feature representation may degrade the performance of the classification task.For the first time in the field of intrusion detection,this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder(DAE)for learning the robust feature representation and one-class support vector machine(OCSVM)for finding the more compact decision hyperplane for intrusion detection.Specially,the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously.This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection.Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model.First,the ablation evaluation on benchmark dataset,NSL-KDD validates the design decision of the proposed model.Next,the performance evaluation on recent intrusion dataset,UNSW-NB15 signifies the stable performance of the proposed model.Finally,the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods. 展开更多
关键词 CYBERSECURITY network intrusion detection deep learning autoencoder stacked autoencoder feature representational learning joint learning one-class classifier OCSVM
下载PDF
An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals
16
作者 Jianyu WANG Heng ZHANG Qiang MIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期506-520,共15页
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc... Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment. 展开更多
关键词 Anomaly detection Spatio-temporal informa-tion Multivariate time series signals Attention graph convolution stacked autoencoder
原文传递
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM
17
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 Network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
下载PDF
基于SAE-BP神经网络的审计风险识别研究——以计算机、通信和其他电子设备制造业行业为例
18
作者 刘聪粉 张庚珠 《经济问题》 CSSCI 北大核心 2024年第6期123-128,F0003,共7页
审计风险的识别和评估是现代风险导向审计的重要内容,为准确地识别审计风险,建立了一套基于SAE-BP神经网络的审计风险识别模型。选取16个指标构成重大错报风险评估模型的输入指标体系,利用SAE算法提取特征,通过机器学习模型BP神经网络... 审计风险的识别和评估是现代风险导向审计的重要内容,为准确地识别审计风险,建立了一套基于SAE-BP神经网络的审计风险识别模型。选取16个指标构成重大错报风险评估模型的输入指标体系,利用SAE算法提取特征,通过机器学习模型BP神经网络分类器进行识别,构建SAE-BP神经网络,并选取135个A股上市公司作为样本进行了实证分析。结果表明:该模型运算速度快,模型平均识别准确率较高,可以达到88.5%,能够对审计风险进行高质量识别,有效提高了审计的效率。 展开更多
关键词 审计风险识别 大数据 稀疏自编码器 神经网络
下载PDF
面向车联网DoS攻击的混合入侵检测系统
19
作者 郭健忠 王灿 +1 位作者 谢斌 闵锐 《计算机系统应用》 2025年第3期85-93,共9页
针对车联网中拒绝服务(denial of service,DoS)攻击难以防范且现有监督学习方法无法有效检测零日攻击的问题,提出了一种混合DoS攻击入侵检测系统.首先,对数据集进行预处理,提高数据的质量;其次,利用特征选择滤除冗余特征,旨在获得代表... 针对车联网中拒绝服务(denial of service,DoS)攻击难以防范且现有监督学习方法无法有效检测零日攻击的问题,提出了一种混合DoS攻击入侵检测系统.首先,对数据集进行预处理,提高数据的质量;其次,利用特征选择滤除冗余特征,旨在获得代表性更强的特征;再次,采用集成学习方法将5种基于树结构的监督分类器堆叠集成用于检测已知DoS攻击;最后,提出了一种无监督异常检测方法,将卷积去噪自动编码器与注意力机制相结合来建立正常行为模型,用于检测堆叠集成模型漏报的未知DoS攻击.实验结果表明,对于已知DoS攻击检测,所提系统在Car-Hacking数据集和CICIDS2017数据集上的检测准确率分别为100%和99.967%;对于未知DoS攻击检测,所提系统在上述两个数据集上的检测准确率分别为100%和83.953%,并且在两个数据集上的平均测试时间分别为0.072 ms和0.157 ms,验证了所提系统的有效性和可行性. 展开更多
关键词 车联网 入侵检测 DOS攻击 堆叠集成 自动编码器
下载PDF
SAE J1939协议栈设计及μC/OS-Ⅱ系统下的开发平台的研究 被引量:7
20
作者 夏继强 李晓君 +1 位作者 曹磊 孙进 《汽车工程》 EI CSCD 北大核心 2008年第12期1069-1074,共6页
设计了SAE J1939协议栈。它采用分层结构,定义了相应的报文数据结构,并实现了分段传输功能。以该协议栈为核心,提出了一种基于μC/OS-Ⅱ的SAE J1939汽车ECU通用开发平台。通过一个客车用汽车仪表的开发实例,验证了SAE J1939协议栈及该EC... 设计了SAE J1939协议栈。它采用分层结构,定义了相应的报文数据结构,并实现了分段传输功能。以该协议栈为核心,提出了一种基于μC/OS-Ⅱ的SAE J1939汽车ECU通用开发平台。通过一个客车用汽车仪表的开发实例,验证了SAE J1939协议栈及该ECU通用开发平台的正确性。应用此协议栈和通用开发平台,ECU的研发只需编写针对应用的代码,大大缩短了汽车ECU产品的开发周期。 展开更多
关键词 sae J1939 协议栈 CAN总线 ECU μC/OS—Ⅱ
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部