Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments.Indeed, current available therapies are sym...Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments.Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers(e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration.展开更多
Low back pain is a common clinical problem, which leads to significant social, economic and public health costs. Intervertebral disc(IVD) degeneration is accepted as a common cause of low back pain. Initially, this is...Low back pain is a common clinical problem, which leads to significant social, economic and public health costs. Intervertebral disc(IVD) degeneration is accepted as a common cause of low back pain. Initially, this is characterized by a loss of proteoglycans from the nucleus pulposus resulting in loss of tissue hydration and hydrostatic pressure. Conservative management,including analgesia and physiotherapy often fails and surgical treatment, such as spinal fusion, is required. Stem cells offer an exciting possible regenerative approach to IVD disease. Preclinical research has demonstrated promising biochemical, histological and radiological results in restoring degenerate IVDs. Cell tracking provides an opportunity to develop an in-depth understanding of stem cell survival, differentiation and migration, enabling optimization of stem cell treatment. Magnetic Resonance Imaging(MRI) is a non-invasive, non-ionizing imaging modality with high spatial resolution, ideally suited for stem cell tracking. Furthermore, novel MRI sequences have the potential to quantitatively assess IVD disease, providing an improved method to review response to biological treatment. Superparamagnetic iron oxide nanoparticles have been extensively researched for the purpose of cell tracking. These particles are biocompatible, non-toxic and act as excellent MRI contrast agents. This review will explore recent advances and issues in stem cell tracking and molecular imaging in relation to the IVD.展开更多
Objective: To explore the survival and migration of bone mesenchymal stem cells transplantated in intervertebral disc of rabbits and expression of the exogenic genes. Methods. Thirty-two rabbits were used, A randomiz...Objective: To explore the survival and migration of bone mesenchymal stem cells transplantated in intervertebral disc of rabbits and expression of the exogenic genes. Methods. Thirty-two rabbits were used, A randomized block design was used and discs in the same rabbit were one block,the lumbar discs from L2-3 to L5-6 were randomly divided into blank group, saline group, cell transplantation group Ⅰand cell transplantation group Ⅱ. The fluorescence microscopy was used to determine the fluorescence of the maker protein GFP and DNA-PCR was used to analyze the copies of DNA of neomycin-resistant gene at 1, 3, 6, months after transplantation. Results: There was fluorescence in cell transplantation group Ⅰ and Ⅱ and none in blank group, saline group at 1, 3, 6 months after transplantation. In cell transplantation groups,the fluorescent distribution was more scatter with time, but no significant difference between cell groups Ⅰ and Ⅱ. The test of neomycin resistant gene expressed in cell transplantation group Ⅰ and Ⅱ and quantitative analysis showed that there was no significant difference between the cell groups Ⅰ and Ⅱ (P〉0.05). Conclusion: The transplanted bone mesenchymal stem cells can survive, migrate and the transfer genes can express efficiently, it suggests that the BMSC therapy may be effective to prevent and treat intervertebral disc degeneration.展开更多
BACKGROUND Intervertebral disc(IVD) degeneration is a condition characterized by a reduction in the water and extracellular matrix content of the nucleus pulposus(NP) and is considered as one of the dominating contrib...BACKGROUND Intervertebral disc(IVD) degeneration is a condition characterized by a reduction in the water and extracellular matrix content of the nucleus pulposus(NP) and is considered as one of the dominating contributing factors to low back pain. Recent evidence suggests that stromal cell-derived factor 1α(SDF-1α) and its receptor CX-C chemokine receptor type 4(CXCR4) direct the migration of stem cells associated with injury repair in different musculoskeletal tissues.AIM To investigate the effects of SDF-1α on recruitment and chondrogenic differentiation of nucleus pulposus-derived stem cells(NPSCs).METHODS We performed real-time RT-PCR and enzyme-linked immunosorbent assay to examine the expression of SDF-1α in nucleus pulposus cells after treatment with pro-inflammatory cytokines in vitro. An animal model of IVD degeneration was established using annular fibrosus puncture in rat coccygeal discs. Tissue samples were collected from normal control and degeneration groups.Differences in the expression of SDF-1α between the normal and degenerative IVDs were analyzed by immunohistochemistry. The migration capacity of NPSCs induced by SDF-1α was evaluated using wound healing and transwell migration assays. To determine the effect of SDF-1α on chondrogenic differentiation of NPSCs, we conducted cell micromass culture and examined the expression levels of Sox-9, aggrecan, and collagen II. Moreover, the roles of SDF-1/CXCR4 axis in the migration and chondrogenesis differentiation of NPSCs were analyzed by immunofluorescence, immunoblotting, and real-time RT-PCR.RESULTS SDF-1α was significantly upregulated in the native IVD cells cultured in vitro with pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, mimicking the degenerative settings. Immunohistochemical staining showed that the level of SDF-1α was also significantly higher in the degenerative group than in the normal group. SDF-1α enhanced the migration capacity of NPSCs in a dose-dependent manner. In addition, SDF-1α induced chondrogenic differentiation of NPSCs, as evidenced by the increased expression of chondrogenic markers using histological and immunoblotting analyses. Realtime RT-PCR, immunoblotting, and immunofluorescence showed that SDF-1αnot only increased CXCR4 expression but also stimulated translocation of CXCR4 from the cytoplasm to membrane, accompanied by cytoskeletal rearrangement.Furthermore, blocking CXCR4 with AMD3100 effectively suppressed the SDF-1α-induced migration and differentiation capacities of NPSCs.CONCLUSION These findings demonstrate that SDF-1α has the potential to enhance recruitment and chondrogenic differentiation of NPSCs via SDF-1/CXCR4 chemotaxis signals that contribute to IVD regeneration.展开更多
文摘Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments.Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers(e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration.
文摘Low back pain is a common clinical problem, which leads to significant social, economic and public health costs. Intervertebral disc(IVD) degeneration is accepted as a common cause of low back pain. Initially, this is characterized by a loss of proteoglycans from the nucleus pulposus resulting in loss of tissue hydration and hydrostatic pressure. Conservative management,including analgesia and physiotherapy often fails and surgical treatment, such as spinal fusion, is required. Stem cells offer an exciting possible regenerative approach to IVD disease. Preclinical research has demonstrated promising biochemical, histological and radiological results in restoring degenerate IVDs. Cell tracking provides an opportunity to develop an in-depth understanding of stem cell survival, differentiation and migration, enabling optimization of stem cell treatment. Magnetic Resonance Imaging(MRI) is a non-invasive, non-ionizing imaging modality with high spatial resolution, ideally suited for stem cell tracking. Furthermore, novel MRI sequences have the potential to quantitatively assess IVD disease, providing an improved method to review response to biological treatment. Superparamagnetic iron oxide nanoparticles have been extensively researched for the purpose of cell tracking. These particles are biocompatible, non-toxic and act as excellent MRI contrast agents. This review will explore recent advances and issues in stem cell tracking and molecular imaging in relation to the IVD.
基金The Study of Differentiation of Bone Mesenchymal Stem Cells Transplanted in Intervertebral Disc and Expression of ExogenousGene(30400163)
文摘Objective: To explore the survival and migration of bone mesenchymal stem cells transplantated in intervertebral disc of rabbits and expression of the exogenic genes. Methods. Thirty-two rabbits were used, A randomized block design was used and discs in the same rabbit were one block,the lumbar discs from L2-3 to L5-6 were randomly divided into blank group, saline group, cell transplantation group Ⅰand cell transplantation group Ⅱ. The fluorescence microscopy was used to determine the fluorescence of the maker protein GFP and DNA-PCR was used to analyze the copies of DNA of neomycin-resistant gene at 1, 3, 6, months after transplantation. Results: There was fluorescence in cell transplantation group Ⅰ and Ⅱ and none in blank group, saline group at 1, 3, 6 months after transplantation. In cell transplantation groups,the fluorescent distribution was more scatter with time, but no significant difference between cell groups Ⅰ and Ⅱ. The test of neomycin resistant gene expressed in cell transplantation group Ⅰ and Ⅱ and quantitative analysis showed that there was no significant difference between the cell groups Ⅰ and Ⅱ (P〉0.05). Conclusion: The transplanted bone mesenchymal stem cells can survive, migrate and the transfer genes can express efficiently, it suggests that the BMSC therapy may be effective to prevent and treat intervertebral disc degeneration.
基金the National Natural Science Foundation of China,No.81772399
文摘BACKGROUND Intervertebral disc(IVD) degeneration is a condition characterized by a reduction in the water and extracellular matrix content of the nucleus pulposus(NP) and is considered as one of the dominating contributing factors to low back pain. Recent evidence suggests that stromal cell-derived factor 1α(SDF-1α) and its receptor CX-C chemokine receptor type 4(CXCR4) direct the migration of stem cells associated with injury repair in different musculoskeletal tissues.AIM To investigate the effects of SDF-1α on recruitment and chondrogenic differentiation of nucleus pulposus-derived stem cells(NPSCs).METHODS We performed real-time RT-PCR and enzyme-linked immunosorbent assay to examine the expression of SDF-1α in nucleus pulposus cells after treatment with pro-inflammatory cytokines in vitro. An animal model of IVD degeneration was established using annular fibrosus puncture in rat coccygeal discs. Tissue samples were collected from normal control and degeneration groups.Differences in the expression of SDF-1α between the normal and degenerative IVDs were analyzed by immunohistochemistry. The migration capacity of NPSCs induced by SDF-1α was evaluated using wound healing and transwell migration assays. To determine the effect of SDF-1α on chondrogenic differentiation of NPSCs, we conducted cell micromass culture and examined the expression levels of Sox-9, aggrecan, and collagen II. Moreover, the roles of SDF-1/CXCR4 axis in the migration and chondrogenesis differentiation of NPSCs were analyzed by immunofluorescence, immunoblotting, and real-time RT-PCR.RESULTS SDF-1α was significantly upregulated in the native IVD cells cultured in vitro with pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, mimicking the degenerative settings. Immunohistochemical staining showed that the level of SDF-1α was also significantly higher in the degenerative group than in the normal group. SDF-1α enhanced the migration capacity of NPSCs in a dose-dependent manner. In addition, SDF-1α induced chondrogenic differentiation of NPSCs, as evidenced by the increased expression of chondrogenic markers using histological and immunoblotting analyses. Realtime RT-PCR, immunoblotting, and immunofluorescence showed that SDF-1αnot only increased CXCR4 expression but also stimulated translocation of CXCR4 from the cytoplasm to membrane, accompanied by cytoskeletal rearrangement.Furthermore, blocking CXCR4 with AMD3100 effectively suppressed the SDF-1α-induced migration and differentiation capacities of NPSCs.CONCLUSION These findings demonstrate that SDF-1α has the potential to enhance recruitment and chondrogenic differentiation of NPSCs via SDF-1/CXCR4 chemotaxis signals that contribute to IVD regeneration.