As a case study of spatial and temporal variations in earthquake stress drops between the 2008 Ms 8.0 Wenchuan and 2013 Ms 7.0 Lushan earthquakes,we computed 1828 stress-drop values for earthquakes with magnitudes 1.7...As a case study of spatial and temporal variations in earthquake stress drops between the 2008 Ms 8.0 Wenchuan and 2013 Ms 7.0 Lushan earthquakes,we computed 1828 stress-drop values for earthquakes with magnitudes 1.7≤ML≤5.0 during an eight-year time span before and after major earthquakes.We divide the study area into three subregions(the southern segment of the Longmen Shan fault zone;the southwestern junction of the Longmen Shan and Sichuan Basin;and the southwestern margin of the Sichuan Basin)and calculate individual event stress drops in each.The results show that regions of alternating high and low stress drop are found on either side of the southwestern segment of the Longmen Shan fault zone.During the two-year period after the 2008 Ms 8.0 Wenchuan earthquake,the stress state of the southern Longmen Shan fault shows no significant change.A marked increase in stress level appears about 18 months before the 2013 Ms 7.0 Lushan earthquake near the Lushan hypocenter zone.Two months after the Ms 7.0 event,the stress drops suddenly attenuate,with significantly less seismic energy release per event.We find that changes in the patterns of high and low stress drop values are consistent with the process of stress accumulation or transfer from the pre-mainshock to postmainshock periods.The results indicate that major earthquakes are the dominant cause of temporal and spatial evolution in stress levels.Stress drop variations show obvious temporal and spatial patterns that may suggests subtle changes in the character of stress fields on faults and spatial variations related to local intense compression and tectonic effects.展开更多
Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are ca...Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are carried out separately to determine the bulk and shear moduli,the cohesion,and the internal friction angle of the coal samples.By extending the meaning of Mohr’s circle referring to yield stress instead of the maximum principal stress,a yield line is introduced to illustrate the stress drop of Mohr’s circle referring to yield stress instead of the maximum principal stress at the elastoplastic boundary.Furthermore,a theoretical solution of the stress drop as a function of the damage is proposed to investigate how the abutment pressure differs considering the yield line and failure line.In addition,applying the stress drop at the yield line in non-pillar mining,top coal mining,and protective coal mining shows that the damage has a nonlinearly positive influence on the stress drop.The results shows that the bulk modulus and internal friction angle have a more sensitive influence on the stress drop than do the shear modulus and cohesion.Finally,the stress drop is divided into a discontinuous stress drop at the yield line and a structural stress drop at the failure line.The stress drop is effective in describing the discontinuous stress redistribution and shows a clear difference in the movement direction of Mohr’s circle considering the unloading pressure.展开更多
By using a broadband Lg attenuation model developed for the Tibetan Plateau,we isolate source terms by removing attenuation and site effects from the observed Lg-wave displacement spectra of the M 7.0 earthquake that ...By using a broadband Lg attenuation model developed for the Tibetan Plateau,we isolate source terms by removing attenuation and site effects from the observed Lg-wave displacement spectra of the M 7.0 earthquake that occurred on August 8,2017,in Jiuzhaigou,China,and its aftershock sequence.Thus,the source parameters,including the scalar seismic moment,comer frequency and stress drop,of these events can be further estimated.The estimated stress drops vary from 47.1 kPa to 7149.6 kPa,with a median value of 59.4 kPa and most values falling between 50 kPa and 75 kPa.The estimated stress drops show significant spatial variations.Lower stress drops were mainly found close to the mainshock and on the seismogenic fault plane with large coseismic slip.In contrast,the highest stress drop was 7.1 MPa for the mainshock,and relatively large stress drops were also found for aftershocks away from the major seismogenic fault and at depths deeper than the zone with large coseismic slip.By using a statistical method,we found self-similarity among some of the aftershocks with a nearly constant stress drop.In contrast,the stress drop increased with the seismic moment for other aftershocks.The amount of stress released during earthquakes is a fundamental characteristic of the earthquake rupture process.As such,the stress drop represents a key parameter for improving our understanding of earthquake source physics.展开更多
To obtain the stress level at the earthquake source, this paper sets forth the solution of the stress magnitude at the earthquake source by seismic stress drop and the stress axis deflections before and after large ea...To obtain the stress level at the earthquake source, this paper sets forth the solution of the stress magnitude at the earthquake source by seismic stress drop and the stress axis deflections before and after large earthquakes. The pre-seismic and post-seismic stress direction can be statistically determined by a large collection of foreshock and aftershock focal mechanism data while the stress drop can be determined through the source fracture inversion from seismic wave data or crust deformation data. The paper attempts to make a fundamental contribution to seismic dynamics.展开更多
Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the c...Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.展开更多
It has been observed for a long time that the high-frequency fall-off constant of source spectra is about 2 for 'large'earthquakes and about 3 for 'small' earthquakes. For earthquakes between 'larg...It has been observed for a long time that the high-frequency fall-off constant of source spectra is about 2 for 'large'earthquakes and about 3 for 'small' earthquakes. For earthquakes between 'large' and 'small', the high-frequencyfall-off constant is not an integer and varies with the size of the earthquake. In this article such a variation is explainedin the perspective of the scaling of stress drop, which proposes a new approach to the study of the scaling of stress dropusing seismic data with lower quality of completeness and high-frequency characteristics. The study on the sourcespectra of the aftershocks of the 1988 Lancang-Gengma, Yunnan, China earthquake shows that the high-frequencyfall-off of source spectra and its variation with the size of earthquake can be well explained by the model that for 'large'earthquakes the stress drop is a constant while for ',small' earthquakes the stress drop increases with the size of theearthquake.展开更多
It is revealed in frictional experiments on medium-scale samples that period doubling bifurcation of stress drop for stick-slip occurs due to macroscopic heterogeneity of the sliding surface under conditions for typic...It is revealed in frictional experiments on medium-scale samples that period doubling bifurcation of stress drop for stick-slip occurs due to macroscopic heterogeneity of the sliding surface under conditions for typical stick-slip.The observed data show that the period doubling bifurcation of stress drop results from the alternate occurrence of strain release along the whole fault and along part of fault.This implies that complicated nonlinear behavior corresponds to clear physical implication in some cases.展开更多
According to the source dislocation model suggested by Brune(1970), the authors have calculated the displacement spectra of S wave and source parameters of the Heqing M S 5 3 earthquake sequence, using th...According to the source dislocation model suggested by Brune(1970), the authors have calculated the displacement spectra of S wave and source parameters of the Heqing M S 5 3 earthquake sequence, using the digital data of this sequence obtained in the Western Yunnan Earthquake Prediction Experimental Field (WYEPEF). Based on this calculation we have studied the dependence of the peak velocity ( rv ) of ground motion on the seismic stress drop Δ σ . From the seismic scaling law we obtained ( rv )∝Δ σ 2/3 , thus the three formulae of calculating seismic stress drop Δ σ using the peak velocity parameters can be derived: lg( rv)=d 1+13lg M 0+23lgΔ σ ; lg( rv) =d 2+13 M L+23lgΔ σ ; lgΔ σ =-1 0+1 5lg( rv ) Assuming that the average stress drop Δ σ =3.0×10 6 Pa for great and small earthquakes, then the constants d 1=-3 88 and d 2=-0 38 are determined by the observational data of the Heqing M S5 3 sequence. Results of the source parameters for this sequence show that the seismic moment M 0 is between 10 11 N·m and 10 15 N·m, the rupture radius a of the source is between 200 m and 600 m, the stress drop Δ σ is between 0 1 MPa and 10 MPa and the average stress drop Δ σ =3 7 MPa calculated from the peak velocity parameter of the ground motion. Δσ values measured from these scaling relations are basically in agreement with the results given by Brune′s method( 1970). Results of this study show that the dependence of the ground motion peak velocity parameter (rv) on the stress drop Δσ is even stronger than that on the seismic moment M 0 .展开更多
基于浙江测震台网记录到的2017年2—9月磐安地区发生的地震序列资料,采用Brune震源模型理论和波谱分析方法,得到磐安震群序列的应力降、视应力等震源参数。利用台站的零频幅值,计算谱振幅相关系数。采用聚类分组,并结合Cut and Paste(C...基于浙江测震台网记录到的2017年2—9月磐安地区发生的地震序列资料,采用Brune震源模型理论和波谱分析方法,得到磐安震群序列的应力降、视应力等震源参数。利用台站的零频幅值,计算谱振幅相关系数。采用聚类分组,并结合Cut and Paste(CAP)反演方法得到ML4.0主地震事件的震源机制解,系统分析小地震的震源机制的一致性程度。结果显示:震源区应力降值在0.00~0.80 MPa之间,整体构造应力较低;谱振幅相关系数较低,在0.86~0.95之间,震源机制整体相似程度不高;应力积累没有形成一个优势方向,可能指示磐安序列为低摩擦应力的断层作用。研究结果表明:磐安地震序列为普通的小震序列,其震源机制类型与构造应力场基本一致;谱振幅相关分析法可为小震序列的震后快速判定提供重要依据。展开更多
基金supported by the China Seismic Experiment Site Project(Grant No.2018CSES0209)the Project of Science for Earthquake Resilience(Grant No.XH202302),part of the China Earthquake Administration。
文摘As a case study of spatial and temporal variations in earthquake stress drops between the 2008 Ms 8.0 Wenchuan and 2013 Ms 7.0 Lushan earthquakes,we computed 1828 stress-drop values for earthquakes with magnitudes 1.7≤ML≤5.0 during an eight-year time span before and after major earthquakes.We divide the study area into three subregions(the southern segment of the Longmen Shan fault zone;the southwestern junction of the Longmen Shan and Sichuan Basin;and the southwestern margin of the Sichuan Basin)and calculate individual event stress drops in each.The results show that regions of alternating high and low stress drop are found on either side of the southwestern segment of the Longmen Shan fault zone.During the two-year period after the 2008 Ms 8.0 Wenchuan earthquake,the stress state of the southern Longmen Shan fault shows no significant change.A marked increase in stress level appears about 18 months before the 2013 Ms 7.0 Lushan earthquake near the Lushan hypocenter zone.Two months after the Ms 7.0 event,the stress drops suddenly attenuate,with significantly less seismic energy release per event.We find that changes in the patterns of high and low stress drop values are consistent with the process of stress accumulation or transfer from the pre-mainshock to postmainshock periods.The results indicate that major earthquakes are the dominant cause of temporal and spatial evolution in stress levels.Stress drop variations show obvious temporal and spatial patterns that may suggests subtle changes in the character of stress fields on faults and spatial variations related to local intense compression and tectonic effects.
基金The authors gratefully acknowledge the financial support received from the National Natural Science Foundation of China(Grant Nos.51504257 and 51674266)the State Key Research Development Program of China(Grant No.2016YFC0600704)+1 种基金the Fund of Yue Qi Outstanding Scholars(Grant No.2018A16)the Open Fund of the State Key Laboratory of Coal Mine Disaster Dynamics and Control at Chongqing University(Grant No.2011DA105287-FW201604).
文摘Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are carried out separately to determine the bulk and shear moduli,the cohesion,and the internal friction angle of the coal samples.By extending the meaning of Mohr’s circle referring to yield stress instead of the maximum principal stress,a yield line is introduced to illustrate the stress drop of Mohr’s circle referring to yield stress instead of the maximum principal stress at the elastoplastic boundary.Furthermore,a theoretical solution of the stress drop as a function of the damage is proposed to investigate how the abutment pressure differs considering the yield line and failure line.In addition,applying the stress drop at the yield line in non-pillar mining,top coal mining,and protective coal mining shows that the damage has a nonlinearly positive influence on the stress drop.The results shows that the bulk modulus and internal friction angle have a more sensitive influence on the stress drop than do the shear modulus and cohesion.Finally,the stress drop is divided into a discontinuous stress drop at the yield line and a structural stress drop at the failure line.The stress drop is effective in describing the discontinuous stress redistribution and shows a clear difference in the movement direction of Mohr’s circle considering the unloading pressure.
基金The authors are grateful to the two anonymous reviewers,whose constructive comments have improved this paperThis work was supported by the Special Fund of China Seismic Experimental Site(Nos.2019CSES0103,2018CESE0102 and 2016CESE0203)+1 种基金the National Natural Science Foundation of China(Nos.41630210,41674060 and 41974054)the 13th Five-year Informatization Plan of Chinese Academy of Sciences(grant No.XXH13505-06)。
文摘By using a broadband Lg attenuation model developed for the Tibetan Plateau,we isolate source terms by removing attenuation and site effects from the observed Lg-wave displacement spectra of the M 7.0 earthquake that occurred on August 8,2017,in Jiuzhaigou,China,and its aftershock sequence.Thus,the source parameters,including the scalar seismic moment,comer frequency and stress drop,of these events can be further estimated.The estimated stress drops vary from 47.1 kPa to 7149.6 kPa,with a median value of 59.4 kPa and most values falling between 50 kPa and 75 kPa.The estimated stress drops show significant spatial variations.Lower stress drops were mainly found close to the mainshock and on the seismogenic fault plane with large coseismic slip.In contrast,the highest stress drop was 7.1 MPa for the mainshock,and relatively large stress drops were also found for aftershocks away from the major seismogenic fault and at depths deeper than the zone with large coseismic slip.By using a statistical method,we found self-similarity among some of the aftershocks with a nearly constant stress drop.In contrast,the stress drop increased with the seismic moment for other aftershocks.The amount of stress released during earthquakes is a fundamental characteristic of the earthquake rupture process.As such,the stress drop represents a key parameter for improving our understanding of earthquake source physics.
基金National Natural Science Foundation of China (40374012) and State Key Fundamental Research Development Plan Project (2001CB711005).
文摘To obtain the stress level at the earthquake source, this paper sets forth the solution of the stress magnitude at the earthquake source by seismic stress drop and the stress axis deflections before and after large earthquakes. The pre-seismic and post-seismic stress direction can be statistically determined by a large collection of foreshock and aftershock focal mechanism data while the stress drop can be determined through the source fracture inversion from seismic wave data or crust deformation data. The paper attempts to make a fundamental contribution to seismic dynamics.
基金sponsored by the Earthquake Situation Tracking Program of 2014 (2014020110)the Science and Technological Fund of Earthquake Administration of Xinjiang Uygur Autonomous Region,China (201402)
文摘Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.
文摘It has been observed for a long time that the high-frequency fall-off constant of source spectra is about 2 for 'large'earthquakes and about 3 for 'small' earthquakes. For earthquakes between 'large' and 'small', the high-frequencyfall-off constant is not an integer and varies with the size of the earthquake. In this article such a variation is explainedin the perspective of the scaling of stress drop, which proposes a new approach to the study of the scaling of stress dropusing seismic data with lower quality of completeness and high-frequency characteristics. The study on the sourcespectra of the aftershocks of the 1988 Lancang-Gengma, Yunnan, China earthquake shows that the high-frequencyfall-off of source spectra and its variation with the size of earthquake can be well explained by the model that for 'large'earthquakes the stress drop is a constant while for ',small' earthquakes the stress drop increases with the size of theearthquake.
文摘It is revealed in frictional experiments on medium-scale samples that period doubling bifurcation of stress drop for stick-slip occurs due to macroscopic heterogeneity of the sliding surface under conditions for typical stick-slip.The observed data show that the period doubling bifurcation of stress drop results from the alternate occurrence of strain release along the whole fault and along part of fault.This implies that complicated nonlinear behavior corresponds to clear physical implication in some cases.
文摘According to the source dislocation model suggested by Brune(1970), the authors have calculated the displacement spectra of S wave and source parameters of the Heqing M S 5 3 earthquake sequence, using the digital data of this sequence obtained in the Western Yunnan Earthquake Prediction Experimental Field (WYEPEF). Based on this calculation we have studied the dependence of the peak velocity ( rv ) of ground motion on the seismic stress drop Δ σ . From the seismic scaling law we obtained ( rv )∝Δ σ 2/3 , thus the three formulae of calculating seismic stress drop Δ σ using the peak velocity parameters can be derived: lg( rv)=d 1+13lg M 0+23lgΔ σ ; lg( rv) =d 2+13 M L+23lgΔ σ ; lgΔ σ =-1 0+1 5lg( rv ) Assuming that the average stress drop Δ σ =3.0×10 6 Pa for great and small earthquakes, then the constants d 1=-3 88 and d 2=-0 38 are determined by the observational data of the Heqing M S5 3 sequence. Results of the source parameters for this sequence show that the seismic moment M 0 is between 10 11 N·m and 10 15 N·m, the rupture radius a of the source is between 200 m and 600 m, the stress drop Δ σ is between 0 1 MPa and 10 MPa and the average stress drop Δ σ =3 7 MPa calculated from the peak velocity parameter of the ground motion. Δσ values measured from these scaling relations are basically in agreement with the results given by Brune′s method( 1970). Results of this study show that the dependence of the ground motion peak velocity parameter (rv) on the stress drop Δσ is even stronger than that on the seismic moment M 0 .
文摘基于浙江测震台网记录到的2017年2—9月磐安地区发生的地震序列资料,采用Brune震源模型理论和波谱分析方法,得到磐安震群序列的应力降、视应力等震源参数。利用台站的零频幅值,计算谱振幅相关系数。采用聚类分组,并结合Cut and Paste(CAP)反演方法得到ML4.0主地震事件的震源机制解,系统分析小地震的震源机制的一致性程度。结果显示:震源区应力降值在0.00~0.80 MPa之间,整体构造应力较低;谱振幅相关系数较低,在0.86~0.95之间,震源机制整体相似程度不高;应力积累没有形成一个优势方向,可能指示磐安序列为低摩擦应力的断层作用。研究结果表明:磐安地震序列为普通的小震序列,其震源机制类型与构造应力场基本一致;谱振幅相关分析法可为小震序列的震后快速判定提供重要依据。