Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra...Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.展开更多
Artificial fish reef is a kind of artificial structure in water,which provides a necessary and safe place for aquatic life such as fish to inhabit,grow,and breed,and creates an environment suitable for fish growth,so ...Artificial fish reef is a kind of artificial structure in water,which provides a necessary and safe place for aquatic life such as fish to inhabit,grow,and breed,and creates an environment suitable for fish growth,so as to protect and multiply fishery resources.In a large time scale,the physical process of sea area can deeply affect the chemical process and biological process,so the structure characteristics of artificial reef are the key factors affecting the flow field effect around the reef.In this study,through the hydrodynamic experiments of four kinds of reef models,including big windows box reef,big and small windows box reef,"(卐)"shaped reef and double-layer shellfish breeding reef,the influence of single reef structure on the flow field effect is analyzed,and the force conditions of different reefs under the same incoming current velocity are obtained.According to the simulation results,the safety research and calculation of five kinds of reef models are carried out,and the volumes of vortex area and upwelling area behind four kinds of reef are obtained.Using hydrodynamic model to simulate the flow field effect of reef area,optimizing the reef structure design,improving the maximum biological trapping and proliferation effect of reef,can provide theoretical guidance and scientific and technological support for the construction of reef area.展开更多
Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmit...Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmits professional knowledge for students,enhances the students’professional ability,and further carries out in-depth research on the course to bring a better teaching effect for students.The article mainly focuses on the research of the principles of concrete structure design course,conducts an analysis of the teaching characteristics of the principles of concrete structure design course,and reasonably sets the teaching content from the optimization of the course teaching objectives;innovative course teaching methods can deepen the effect of knowledge understanding;reform of experimental practice teaching can lay down the effect of the internalization of knowledge,etc.The in-depth description and discussion of the relevant aspects of the research aim to provide guidelines for related research.展开更多
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect...Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.展开更多
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement...Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.展开更多
The curriculum“Woven Fabric Structure Design and Application”is the core curriculum of textile majors in higher vocational colleges,which plays a very important role in the cultivation of students’vocational abilit...The curriculum“Woven Fabric Structure Design and Application”is the core curriculum of textile majors in higher vocational colleges,which plays a very important role in the cultivation of students’vocational ability and professional quality.The curriculum reform of“Woven Fabric Structure Design and Application”through the deep cooperation of industry-college partnerships,the comprehensive analysis of the major training objectives and graduation requirements,the redesign of the curriculum teaching content,the improvement of the teaching method and the examination method,has achieved good results.展开更多
Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions an...Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions and importance of structures based on the theory of life cycle cost(LCC). First, the basic concept of DZS for concrete structure design is defined. Then the basic principles for DZS are established. The factors for zonation according to natural environmental conditions and structural importance are identified. The usefulness of DZS by citing a real application for concrete highway bridges in Zhejiang Province is demonstrated. Finally, durability regulations are provided accordingly to zonation.展开更多
Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system gen...Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system generates the assembly scheme using the case? based method, then assigns the design requirements into each component of the assembly. The detail design for each component can be performed under these design constraints. In order to practise concurrent design, the system sends the final design result to the upstream section and downstream section through PDM to achieve information sharing and integration.展开更多
A comprehensive way to design a sub 50nm SADG MOSFET with the ability of being fabricated by improved CMOS technique is described.Under this way,the gate length and thickness of Si island of DG device show many diffe...A comprehensive way to design a sub 50nm SADG MOSFET with the ability of being fabricated by improved CMOS technique is described.Under this way,the gate length and thickness of Si island of DG device show many different scaling limits for various elements.Meanwhile,the spacer insulator shows a kind of width thickness on device drain current and circuit speed.A model about that effect is developed and offers design consideration for future.A new design of channel doping profile,called SCD,is also discussed here in detail.The DG device with SCD can achieve a good balance between the volume inversion operation mode and the control of V th .Finally,a guideline to make a SADG MOSFET is presented.展开更多
Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patie...Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.展开更多
The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPC Ⅱ). Electrons and positrons collide in the...The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPC Ⅱ). Electrons and positrons collide in the BESⅢ beam pipe. According to the demands of the BEPC Ⅱ, a key program of Chinese Academy of Sciences, the BESⅢ beam pipe is designed based on the finite elements analysis. The BESIII beam pipe is installed in the inner cylinder of the BESⅢ drift chamber. As a vacuum tube, the BESIII beam pipe is designed as 1 000 mm in length, 63 mm in inner diameter and 114 mm in outer diameter, respectively. The BESIII beam pipe consists of a central beryllium pipe cooled by EDM-1, the oil No.1 for electric discharge machining, and two extended copper pipes cooled by deionized water (DW). The three parts are jointed by vacuum welding. Factors taken into account in the design are as follows. ① The wall thickness of the central beryllium pipe should be designed as small as possible to reduce the multi-scattering and improve the particle momentum resolution. And the wall thickness of the extended copper pipe should be designed as large as possible to protect the detectors from the backgrounds. ②The BESⅢ beam pipe must be sufficiently cooled to avoid the damage and prevents its influence to the BESⅢ drift chamber (DC) operation. The inner surface temperature of the DC inner cylinder must be maintained at 293±2 K. ③ The magnetic permeability of the materials used in the BESⅢ beam pipe must be less than 1.05 H/m to avoid large magnetic field distortions. ④ The static pressure of the vacuum chamber of the BESⅢ beam pipe must be less than 800 μPa. The simulating results show that the designed structure of the BESⅢ beam pipe satisfies the requirements mentioned above. The structure design scheme is evaluated and adonted hv the headouarters of BEPCⅡ.展开更多
Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow ...Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow active materials with promoted reaction reversibility,accelerated kinetic and restricted volume change still remains a huge challenge.Herein,a novel chemical interaction motivated structure design strategy has been proposed,and a chemically bonded Co(CO_(3))_(0.5)OH·0.11 H_(2)O@MXene(CoCH@MXene)layered-composite was fabricated for the first time.In such a composite,the chemical interaction between Co^(2+)and MXene drives the growth of smaller-sized CoCH crystals and the subsequent formation of interwoven CoCH wires sandwiched in-between MXene nanosheets.This unique layered structure not only encourages charge transfer for faster reaction dynamics,but buffers the volume change of CoCH during lithiation-delithiation process,owing to the confined crystal growth between conductive MXene layers with the help of chemical bonding.Besides,the sandwiched interwoven CoCH wires also prevent the stacking of MXene layers,further conducive to the electrochemical performance of the composite.As a result,the as-prepared CoCH@MXene anode demonstrates a high reversible capacity(903.1 mAh g^(-1)at 100 mA g^(-1))and excellent cycling stability(maintains 733.6 mAh g^(-1)at1000 mA g^(-1)after 500 cycles)for lithium ion batteries.This work highlights a novel concept of layerby-layer chemical interaction motivated architecture design for futuristic high performance electrode materials in energy storage systems.展开更多
In order to achieve automatic adjustment of the double-nut ball screw preload, a magnetostrictive ball screw preload system is proposed. A new cylindrical giant magnetostrictive actuator (CGMA), which is the core co...In order to achieve automatic adjustment of the double-nut ball screw preload, a magnetostrictive ball screw preload system is proposed. A new cylindrical giant magnetostrictive actuator (CGMA), which is the core component of the preload system, is developed using giant magnetostrictive material (GMM) with a hole. The pretightening force of the CGMA is determined by testing. And the magnetic circuit analysis method is introduced to calculate magnetic field intensity of the actuator with a ball screw shaft. To suppress the thermal effects on the magnetostrictive outputs, an oil cooling method which can directly cool the heat source is adopted. A CGMA test platform is established and the static and dynamic output characteristics are respectively studied. The experimental results indicate that the CGMA has good linearity and no double-frequency effect under the bias magnetic field and the output accuracy of the CGMA is significantly improved with cooling measures. Although the output decreased with screw shaft through the actuator, the performance of CGMA meets the design requirements for ball screw preload with output displacement more than 26 μm and force up to 6200 N. The development of a CGMA will provide a new approach for automatic adjustment of double-nut ball screw preload.展开更多
The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross...The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross-section is designed for plasma elongating. Horizontal and vertical ports are designed for diagnosing, vacuum pumping, plasma heating and plasma current driving, etc. The vacuum vessel consists of 16 segments. It will be baked out at 250℃ to obtain a clean wall. When the machine is in operation, both the hot wall (the wall temperature is around 100℃) and the cold wall (wall temperature is in normal equilibrium) are considered. The stress caused by thermal deformation and the electromagnetic (EM) loads caused by 1.5 MA plasma disruption in 3.5 T magnetic field have to be taken into account in the design of the HT-7U vacuum vessel Finite element method was employed for structure analysis of the vacuum vessel.展开更多
In order to develop a high-voltage power supply (HVPS) with high quality parame- ters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the c...In order to develop a high-voltage power supply (HVPS) with high quality parame- ters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the collector power supply for gyrotron is discussed first. Then the electri- cal field and potential simulations of its inain devices are analyzed. Finally, relevant calculations and conclusions are given.展开更多
When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds...When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds of the velocity and diameter of jet head,and therefore obtained the related structure parameters of top liner,so that shaped charge structure was developed.We built a?60mm copper liner and a?142mm Ti-alloy liner which followed the rules of 0.6cal and 0.7cal in-crater diameter.respectively.X-ray experiment and penetration test results showed that the parameters of jet head were consistent with the results of theoretical analysis.The in-crater diameter of?60mm shaped charge reached 36 mm,and the?142mm one reached 100 mm.They both met the design requirements.展开更多
The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined...The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined, resulting in poor designs with insufficient or over sufficient stiffness of press structures. In this paper, an approach for the structure design of hydraulic presses is proposed, which is forming-precision-driven and can make presses costeffective by lightweight optimization. The approach consists of five steps:(1)the determination of the press stiffness specification in terms of the forming precision requirement of workpieces;(2)the conceptual design of the press structures according to the stiffness and workspace specifications, and the structure configuration of the press;(3)the prototype design of the press structures by equivalently converting the conceptual design to prototypes;(4)the selection of key structure parameters by sensitivity analysis of the prototype design; and(5)the optimization of the prototype design. The approach is demonstrated and validated through a case study of the structure design of a 100 MN hydraulic press.展开更多
CAD process for structure design of box culvert is introduced. It follows the traditional way of culvert design. All working conditions of culvert are taken into account. It can generate load diagram, bending moment d...CAD process for structure design of box culvert is introduced. It follows the traditional way of culvert design. All working conditions of culvert are taken into account. It can generate load diagram, bending moment diagram and bending moment envelope diagram for a single-hole, double-hole or triple-hole box culvert .That is to say, the whole CAD process for the box culvert structure design is realized with the self-developed system. It has been used to accomplish several projects in China and the results are satisfactory.展开更多
Dashboard similar structure design is a kind of interactive design of ergonomics and industrial design, and also the consistency design of functional features and visual organization effect of dashboard. Functional fe...Dashboard similar structure design is a kind of interactive design of ergonomics and industrial design, and also the consistency design of functional features and visual organization effect of dashboard. Functional feature design of dashboard is the analysis of man-machine interface, and visual organization effect design of dashboard is a branch of industrial design, both of them interact and unite.展开更多
With the emergence of BIM technology,the design concepts and methods of building structures have also changed.For construction design work,it is necessary to reasonably control the various elements of building structu...With the emergence of BIM technology,the design concepts and methods of building structures have also changed.For construction design work,it is necessary to reasonably control the various elements of building structure design and scientifically and rationally design the building structure to facilitate onsite construction.Based on this situation,the current BIM technology plays an increasingly important role in the process of building structure design and plays an active role in promoting optimal building structure design.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No.51802025)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2020JQ-384)。
文摘Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.
基金supported by the National Key R&D Plan(No.2023YFD2401104)Tianjin Agricultural Development Service Center Science and Technology Innovation Project for Youth(No.ZXKJ202429 and No.ZXKJ202454).
文摘Artificial fish reef is a kind of artificial structure in water,which provides a necessary and safe place for aquatic life such as fish to inhabit,grow,and breed,and creates an environment suitable for fish growth,so as to protect and multiply fishery resources.In a large time scale,the physical process of sea area can deeply affect the chemical process and biological process,so the structure characteristics of artificial reef are the key factors affecting the flow field effect around the reef.In this study,through the hydrodynamic experiments of four kinds of reef models,including big windows box reef,big and small windows box reef,"(卐)"shaped reef and double-layer shellfish breeding reef,the influence of single reef structure on the flow field effect is analyzed,and the force conditions of different reefs under the same incoming current velocity are obtained.According to the simulation results,the safety research and calculation of five kinds of reef models are carried out,and the volumes of vortex area and upwelling area behind four kinds of reef are obtained.Using hydrodynamic model to simulate the flow field effect of reef area,optimizing the reef structure design,improving the maximum biological trapping and proliferation effect of reef,can provide theoretical guidance and scientific and technological support for the construction of reef area.
文摘Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmits professional knowledge for students,enhances the students’professional ability,and further carries out in-depth research on the course to bring a better teaching effect for students.The article mainly focuses on the research of the principles of concrete structure design course,conducts an analysis of the teaching characteristics of the principles of concrete structure design course,and reasonably sets the teaching content from the optimization of the course teaching objectives;innovative course teaching methods can deepen the effect of knowledge understanding;reform of experimental practice teaching can lay down the effect of the internalization of knowledge,etc.The in-depth description and discussion of the relevant aspects of the research aim to provide guidelines for related research.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 52064013, 52064014, 52072323 and 52122211)the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.
基金supported financially by the National Key R&D Program of China (Nos. 2018YFA0208501 and 2018YFA0703200)the National Natural Science Foundation of China (NSFC, Nos. 52103236, 91963212, 21875260)Beijing National Laboratory for Molecular Sciences (No. BNLMSCXXM-202005)。
文摘Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
文摘The curriculum“Woven Fabric Structure Design and Application”is the core curriculum of textile majors in higher vocational colleges,which plays a very important role in the cultivation of students’vocational ability and professional quality.The curriculum reform of“Woven Fabric Structure Design and Application”through the deep cooperation of industry-college partnerships,the comprehensive analysis of the major training objectives and graduation requirements,the redesign of the curriculum teaching content,the improvement of the teaching method and the examination method,has achieved good results.
基金The Key Project of National Natural Science Foun-dation of China (No50538070)
文摘Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions and importance of structures based on the theory of life cycle cost(LCC). First, the basic concept of DZS for concrete structure design is defined. Then the basic principles for DZS are established. The factors for zonation according to natural environmental conditions and structural importance are identified. The usefulness of DZS by citing a real application for concrete highway bridges in Zhejiang Province is demonstrated. Finally, durability regulations are provided accordingly to zonation.
文摘Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system generates the assembly scheme using the case? based method, then assigns the design requirements into each component of the assembly. The detail design for each component can be performed under these design constraints. In order to practise concurrent design, the system sends the final design result to the upstream section and downstream section through PDM to achieve information sharing and integration.
文摘A comprehensive way to design a sub 50nm SADG MOSFET with the ability of being fabricated by improved CMOS technique is described.Under this way,the gate length and thickness of Si island of DG device show many different scaling limits for various elements.Meanwhile,the spacer insulator shows a kind of width thickness on device drain current and circuit speed.A model about that effect is developed and offers design consideration for future.A new design of channel doping profile,called SCD,is also discussed here in detail.The DG device with SCD can achieve a good balance between the volume inversion operation mode and the control of V th .Finally,a guideline to make a SADG MOSFET is presented.
基金Supported by National Natural Science Foundation of China(Grant No.61273342)Beijing Municipal Natural Science Foundation of China(Grant Nos.3113026,3132005)
文摘Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.
基金Key Programs of Chinese Academy of Sciences(No.KJ95T-03)
文摘The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPC Ⅱ). Electrons and positrons collide in the BESⅢ beam pipe. According to the demands of the BEPC Ⅱ, a key program of Chinese Academy of Sciences, the BESⅢ beam pipe is designed based on the finite elements analysis. The BESIII beam pipe is installed in the inner cylinder of the BESⅢ drift chamber. As a vacuum tube, the BESIII beam pipe is designed as 1 000 mm in length, 63 mm in inner diameter and 114 mm in outer diameter, respectively. The BESIII beam pipe consists of a central beryllium pipe cooled by EDM-1, the oil No.1 for electric discharge machining, and two extended copper pipes cooled by deionized water (DW). The three parts are jointed by vacuum welding. Factors taken into account in the design are as follows. ① The wall thickness of the central beryllium pipe should be designed as small as possible to reduce the multi-scattering and improve the particle momentum resolution. And the wall thickness of the extended copper pipe should be designed as large as possible to protect the detectors from the backgrounds. ②The BESⅢ beam pipe must be sufficiently cooled to avoid the damage and prevents its influence to the BESⅢ drift chamber (DC) operation. The inner surface temperature of the DC inner cylinder must be maintained at 293±2 K. ③ The magnetic permeability of the materials used in the BESⅢ beam pipe must be less than 1.05 H/m to avoid large magnetic field distortions. ④ The static pressure of the vacuum chamber of the BESⅢ beam pipe must be less than 800 μPa. The simulating results show that the designed structure of the BESⅢ beam pipe satisfies the requirements mentioned above. The structure design scheme is evaluated and adonted hv the headouarters of BEPCⅡ.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.51673123 and No.22005346)the National Key R&D Program of China(No.2017YFE0111500)+1 种基金the State Key Laboratory of Polymer Materials Engineering(Grant No.:sklpme2020-1-02)Financial support provided by the Fundamental Research Funds for the Central Universities(No.YJ202118)。
文摘Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow active materials with promoted reaction reversibility,accelerated kinetic and restricted volume change still remains a huge challenge.Herein,a novel chemical interaction motivated structure design strategy has been proposed,and a chemically bonded Co(CO_(3))_(0.5)OH·0.11 H_(2)O@MXene(CoCH@MXene)layered-composite was fabricated for the first time.In such a composite,the chemical interaction between Co^(2+)and MXene drives the growth of smaller-sized CoCH crystals and the subsequent formation of interwoven CoCH wires sandwiched in-between MXene nanosheets.This unique layered structure not only encourages charge transfer for faster reaction dynamics,but buffers the volume change of CoCH during lithiation-delithiation process,owing to the confined crystal growth between conductive MXene layers with the help of chemical bonding.Besides,the sandwiched interwoven CoCH wires also prevent the stacking of MXene layers,further conducive to the electrochemical performance of the composite.As a result,the as-prepared CoCH@MXene anode demonstrates a high reversible capacity(903.1 mAh g^(-1)at 100 mA g^(-1))and excellent cycling stability(maintains 733.6 mAh g^(-1)at1000 mA g^(-1)after 500 cycles)for lithium ion batteries.This work highlights a novel concept of layerby-layer chemical interaction motivated architecture design for futuristic high performance electrode materials in energy storage systems.
基金Project(51475267) supported by the National Natural Science Foundation of China
文摘In order to achieve automatic adjustment of the double-nut ball screw preload, a magnetostrictive ball screw preload system is proposed. A new cylindrical giant magnetostrictive actuator (CGMA), which is the core component of the preload system, is developed using giant magnetostrictive material (GMM) with a hole. The pretightening force of the CGMA is determined by testing. And the magnetic circuit analysis method is introduced to calculate magnetic field intensity of the actuator with a ball screw shaft. To suppress the thermal effects on the magnetostrictive outputs, an oil cooling method which can directly cool the heat source is adopted. A CGMA test platform is established and the static and dynamic output characteristics are respectively studied. The experimental results indicate that the CGMA has good linearity and no double-frequency effect under the bias magnetic field and the output accuracy of the CGMA is significantly improved with cooling measures. Although the output decreased with screw shaft through the actuator, the performance of CGMA meets the design requirements for ball screw preload with output displacement more than 26 μm and force up to 6200 N. The development of a CGMA will provide a new approach for automatic adjustment of double-nut ball screw preload.
文摘The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross-section is designed for plasma elongating. Horizontal and vertical ports are designed for diagnosing, vacuum pumping, plasma heating and plasma current driving, etc. The vacuum vessel consists of 16 segments. It will be baked out at 250℃ to obtain a clean wall. When the machine is in operation, both the hot wall (the wall temperature is around 100℃) and the cold wall (wall temperature is in normal equilibrium) are considered. The stress caused by thermal deformation and the electromagnetic (EM) loads caused by 1.5 MA plasma disruption in 3.5 T magnetic field have to be taken into account in the design of the HT-7U vacuum vessel Finite element method was employed for structure analysis of the vacuum vessel.
文摘In order to develop a high-voltage power supply (HVPS) with high quality parame- ters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the collector power supply for gyrotron is discussed first. Then the electri- cal field and potential simulations of its inain devices are analyzed. Finally, relevant calculations and conclusions are given.
文摘When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds of the velocity and diameter of jet head,and therefore obtained the related structure parameters of top liner,so that shaped charge structure was developed.We built a?60mm copper liner and a?142mm Ti-alloy liner which followed the rules of 0.6cal and 0.7cal in-crater diameter.respectively.X-ray experiment and penetration test results showed that the parameters of jet head were consistent with the results of theoretical analysis.The in-crater diameter of?60mm shaped charge reached 36 mm,and the?142mm one reached 100 mm.They both met the design requirements.
基金Supported by the National Natural Science Foundation of China(No.50805101 and No.51275347)the National Key S&T Special Projects of China on CNC Machine Tools and Fundamental Manufacturing Equipment(No.2010ZX04001-191 and No.2011ZX04002-032)the Science and Technology R&D Program of Tianjin(No.13JCZDJC35000 and No.12ZCDZGX45000)
文摘The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined, resulting in poor designs with insufficient or over sufficient stiffness of press structures. In this paper, an approach for the structure design of hydraulic presses is proposed, which is forming-precision-driven and can make presses costeffective by lightweight optimization. The approach consists of five steps:(1)the determination of the press stiffness specification in terms of the forming precision requirement of workpieces;(2)the conceptual design of the press structures according to the stiffness and workspace specifications, and the structure configuration of the press;(3)the prototype design of the press structures by equivalently converting the conceptual design to prototypes;(4)the selection of key structure parameters by sensitivity analysis of the prototype design; and(5)the optimization of the prototype design. The approach is demonstrated and validated through a case study of the structure design of a 100 MN hydraulic press.
文摘CAD process for structure design of box culvert is introduced. It follows the traditional way of culvert design. All working conditions of culvert are taken into account. It can generate load diagram, bending moment diagram and bending moment envelope diagram for a single-hole, double-hole or triple-hole box culvert .That is to say, the whole CAD process for the box culvert structure design is realized with the self-developed system. It has been used to accomplish several projects in China and the results are satisfactory.
文摘Dashboard similar structure design is a kind of interactive design of ergonomics and industrial design, and also the consistency design of functional features and visual organization effect of dashboard. Functional feature design of dashboard is the analysis of man-machine interface, and visual organization effect design of dashboard is a branch of industrial design, both of them interact and unite.
文摘With the emergence of BIM technology,the design concepts and methods of building structures have also changed.For construction design work,it is necessary to reasonably control the various elements of building structure design and scientifically and rationally design the building structure to facilitate onsite construction.Based on this situation,the current BIM technology plays an increasingly important role in the process of building structure design and plays an active role in promoting optimal building structure design.