In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a slidin...In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.展开更多
In this paper, we concern the approaching condition of sliding mode control (SMC) with a Lipschitz switching surface that may be nonsmooth. New criteria on the relation between phase trajectories and an arbitrary Li...In this paper, we concern the approaching condition of sliding mode control (SMC) with a Lipschitz switching surface that may be nonsmooth. New criteria on the relation between phase trajectories and an arbitrary Lipschitz continuous surface are examined firstly. Filippov's differential inclusion is adopted to describe the dynamics of trajectories of the closed-loop system with SMC. Compared with Filippov's criteria for only smooth surface, new criteria are proposed by utilizing the cone conditions that allow the surface to be nonsmooth. This result also yields a new approaching condition of SMC design. Based on the new approaching condition, we develop the sliding mode controller for a class of nonlinear single-input single-output (SISO) systems, of which the switching surface is designed Lips- chitz continuous for the nonsmooth sliding motion. Finally, we provide a numerical example to verify the new design method.展开更多
Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA(ss DNA)tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ss DN...Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA(ss DNA)tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ss DNA are taken into account. The main results are as follows: i) when the temperature is lower than the critical switching temperature, the ss DNA will collapse due to the existence of electrostatic interaction between ss DNA and charged nanoparticle surface; ii)for the short ss DNA chains with the number of bases less than 10, the switching of ss DNA cannot happen, and the critical temperature does not exist; iii) when the temperature increases, the electrostatic attractive interaction between ss DNA and charged nanoparticle surface becomes weak dramatically, and ss DNA chains will stretch if the electrostatic attractive interaction is insufficient to overcome the elastic energy of ss DNA and the electrostatic repulsion energy. These findings accord well with the experimental observations. It is predicted that the switching of ss DNA will not happen if the grafting densities are too high.展开更多
One of the main problems in variable structure control systems is finding the switching surface on which the controlled plant has a desired specific behaviour.This paper presents a new method for finding switching...One of the main problems in variable structure control systems is finding the switching surface on which the controlled plant has a desired specific behaviour.This paper presents a new method for finding switching surfaces of nonlinear variable structure systems. Using this method, the designer first presents a system with the desired properties, then finds the switching function σ(x) such that the switching surface S∶={x∈R n|σ(x)=0} is coincident with the sliding motion in the given system. This method is applied to the design of the variable structure controller in a power system and the highest transient stability limitations are attained.展开更多
An H-infinifty variable structure control is presented for singular Markov switched systems with mismatched norm-bounded uncertainties and mismatched norm-bounded external disturbances. It is shown that the sliding mo...An H-infinifty variable structure control is presented for singular Markov switched systems with mismatched norm-bounded uncertainties and mismatched norm-bounded external disturbances. It is shown that the sliding mode dynamics on the given switching surface is regular, impulse-free, and stochastically stable and satisfies H-infinity performance. A variable structure controller is designed to guarantee that the system trajectory converges to the linear switching surface in some finite time. Finally, a numerical example is solved to show the effectiveness and validness of the theoretical results.展开更多
This paper studies the nonlinear variable structure control (VSC) technique for designing power system integrate control systems which include an excitation controller and fast valve controller.A new method is applied...This paper studies the nonlinear variable structure control (VSC) technique for designing power system integrate control systems which include an excitation controller and fast valve controller.A new method is applied to find nonlinear switching surface in deriving the control strategy.The responses to various large perturbation are simulated.The simuulation results show that the nonlinear VSC technique for integrated control systems can considerably improve the transient stabilization limitation of power systems and improve the dynamic properties of the generators.展开更多
文摘In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
文摘In this paper, we concern the approaching condition of sliding mode control (SMC) with a Lipschitz switching surface that may be nonsmooth. New criteria on the relation between phase trajectories and an arbitrary Lipschitz continuous surface are examined firstly. Filippov's differential inclusion is adopted to describe the dynamics of trajectories of the closed-loop system with SMC. Compared with Filippov's criteria for only smooth surface, new criteria are proposed by utilizing the cone conditions that allow the surface to be nonsmooth. This result also yields a new approaching condition of SMC design. Based on the new approaching condition, we develop the sliding mode controller for a class of nonlinear single-input single-output (SISO) systems, of which the switching surface is designed Lips- chitz continuous for the nonsmooth sliding motion. Finally, we provide a numerical example to verify the new design method.
基金Project supported by the Joint Funds of Xinjiang Natural Science Foundation,China(Grant No.2015211C298)
文摘Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA(ss DNA)tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ss DNA are taken into account. The main results are as follows: i) when the temperature is lower than the critical switching temperature, the ss DNA will collapse due to the existence of electrostatic interaction between ss DNA and charged nanoparticle surface; ii)for the short ss DNA chains with the number of bases less than 10, the switching of ss DNA cannot happen, and the critical temperature does not exist; iii) when the temperature increases, the electrostatic attractive interaction between ss DNA and charged nanoparticle surface becomes weak dramatically, and ss DNA chains will stretch if the electrostatic attractive interaction is insufficient to overcome the elastic energy of ss DNA and the electrostatic repulsion energy. These findings accord well with the experimental observations. It is predicted that the switching of ss DNA will not happen if the grafting densities are too high.
文摘One of the main problems in variable structure control systems is finding the switching surface on which the controlled plant has a desired specific behaviour.This paper presents a new method for finding switching surfaces of nonlinear variable structure systems. Using this method, the designer first presents a system with the desired properties, then finds the switching function σ(x) such that the switching surface S∶={x∈R n|σ(x)=0} is coincident with the sliding motion in the given system. This method is applied to the design of the variable structure controller in a power system and the highest transient stability limitations are attained.
基金This work was supported by the National Natural Science Foundation of China(No.60574007,60674027).
文摘An H-infinifty variable structure control is presented for singular Markov switched systems with mismatched norm-bounded uncertainties and mismatched norm-bounded external disturbances. It is shown that the sliding mode dynamics on the given switching surface is regular, impulse-free, and stochastically stable and satisfies H-infinity performance. A variable structure controller is designed to guarantee that the system trajectory converges to the linear switching surface in some finite time. Finally, a numerical example is solved to show the effectiveness and validness of the theoretical results.
基金Supported by the Science Foundation of Tsinghua University
文摘This paper studies the nonlinear variable structure control (VSC) technique for designing power system integrate control systems which include an excitation controller and fast valve controller.A new method is applied to find nonlinear switching surface in deriving the control strategy.The responses to various large perturbation are simulated.The simuulation results show that the nonlinear VSC technique for integrated control systems can considerably improve the transient stabilization limitation of power systems and improve the dynamic properties of the generators.