From subject,object and target subsystems,we analyze the rural human resource development system.The subject system includes government,education and training organizations,society,and rural human resource itself.Diff...From subject,object and target subsystems,we analyze the rural human resource development system.The subject system includes government,education and training organizations,society,and rural human resource itself.Different development subject bears different responsibility.Object system includes farmers engaged in farming,farmer workers,rural unemployed people,rural students,rural left-behind people,and other people in rural areas.Different development object has different features.Development target system includes raising quality of rural human resource,keeping reasonable population size,optimizing structure of rural human resource,and improving vitality of rural human resource,etc.展开更多
Cellular senescence is the results of aging and age-related diseases,and the development of anti-aging methods may improve health and extend longevity.The natural flavonol fisetin has been shown to antagonize senescen...Cellular senescence is the results of aging and age-related diseases,and the development of anti-aging methods may improve health and extend longevity.The natural flavonol fisetin has been shown to antagonize senescence in vitro and increases longevity in vivo,but has poor water solubility and limited bioavailability.In this study,a food-grade and senescent cell-targeted delivery system for fisetin was developed based on whey protein isolate-galactooligosaccharides(WPI-GOS)Maillard conjugate,which could recognize senescence associatedβ-galactosidase in senescent cells.The fisetin nanoparticles possessed a high encapsulation efficiency,excellent dispersibility in water,good storage stability and well biocompatibility.Moreover,they could effectively accumulate and retain in senescent cells with excellent senescent cell-targeting efficacy,and inhibit the oxidative stress-induced cellular senescence in vitro.Thus,this novel nanoparticle system based on WPI-GOS Maillard conjugate showed promise to deliver hydrophobic bioactive ingredients like fisetin to senescent cells to improve their bioavailability and anti-senescence effect.展开更多
Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body.Tumor cells take up a large amount of glutamine to meet their rap...Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body.Tumor cells take up a large amount of glutamine to meet their rapid proliferation requirements,which is supported by the upregulation of glutamine transporters.Targeted inhibition of glutamine transporters effectively inhibits cell growth and proliferation in tumors.Among all cancers,digestive system malignant tumors(DSMTs)have the highest incidence and mortality rates,and the current therapeutic strategies for DSMTs are mainly surgical resection and chemotherapy.Due to the relatively low survival rate and severe side effects associated with DSMTs treatment,new treatment strategies are urgently required.This article summarizes the glutamine transporters involved in DSMTs and describes their role in DSMTs.Additionally,glutamine transportertarget drugs are discussed,providing theoretical guidance for the further development of drugs DSMTs treatment.展开更多
To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from ...To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.展开更多
Articular cartilage injury(ACI)remains one of the key challenges in regenerative medicine,as current treatment strategies do not result in ideal regeneration of hyaline-like cartilage.Enhancing endogenous repair via m...Articular cartilage injury(ACI)remains one of the key challenges in regenerative medicine,as current treatment strategies do not result in ideal regeneration of hyaline-like cartilage.Enhancing endogenous repair via micro-RNAs(miRNAs)shows promise as a regenerative therapy.miRNA-140 and miRNA-455 are two key and promising candidates for regulating the chondrogenic differentiation of mesenchymal stem cells(MSCs).In this study,we innovatively synthesized a multifunctional tetrahedral framework in which a nucleic acid(tFNA)-based targeting miRNA codelivery system,named A-T-M,was used.With tFNAs as vehicles,miR-140 and miR-455 were connected to and modified on tFNAs,while Apt19S(a DNA aptamer targeting MSCs)was directly integrated into the nanocomplex.The relevant results showed that A-T-M efficiently delivered miR-140 and miR-455 into MSCs and subsequently regulated MSC chondrogenic differentiation through corresponding mechanisms.Interestingly,a synergistic effect between miR-140 and miR-455 was revealed.Furthermore,A-T-M successfully enhanced the endogenous repair capacity of articular cartilage in vivo and effectively inhibited hypertrophic chondrocyte formation.A-T-M provides a new perspective and strategy for the regeneration of articular cartilage,showing strong clinical application value in the future treatment of ACI.展开更多
BACKGROUND Gliomas pose a significant challenge to effective treatment despite advancements in chemotherapy and radiotherapy.Glioma stem cells(GSCs),a subset within tumors,contribute to resistance,tumor heterogeneity,...BACKGROUND Gliomas pose a significant challenge to effective treatment despite advancements in chemotherapy and radiotherapy.Glioma stem cells(GSCs),a subset within tumors,contribute to resistance,tumor heterogeneity,and plasticity.Recent studies reveal GSCs’role in therapeutic resistance,driven by DNA repair mechanisms and dynamic transitions between cellular states.Resistance mechanisms can involve different cellular pathways,most of which have been recently reported in the literature.Despite progress,targeted therapeutic approaches lack consensus due to GSCs’high plasticity.AIM To analyze targeted therapies against GSC-mediated resistance to radio-and chemotherapy in gliomas,focusing on underlying mechanisms.METHODS A systematic search was conducted across major medical databases(PubMed,Embase,and Cochrane Library)up to September 30,2023.The search strategy utilized relevant Medical Subject Heading terms and keywords related to including“glioma stem cells”,“radiotherapy”,“chemotherapy”,“resistance”,and“targeted therapies”.Studies included in this review were publications focusing on targeted therapies against the molecular mechanism of GSC-mediated re-sistance to radiotherapy resistance(RTR).RESULTS In a comprehensive review of 66 studies on stem cell therapies for SCI,452 papers were initially identified,with 203 chosen for full-text analysis.Among them,201 were deemed eligible after excluding 168 for various reasons.The temporal breakdown of studies illustrates this trend:2005-2010(33.3%),2011-2015(36.4%),and 2016-2022(30.3%).Key GSC models,particularly U87(33.3%),U251(15.2%),and T98G(15.2%),emerge as significant in research,reflecting their representativeness of glioma characteristics.Pathway analysis indicates a focus on phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin(mTOR)(27.3%)and Notch(12.1%)pathways,suggesting their crucial roles in resistance development.Targeted molecules with mTOR(18.2%),CHK1/2(15.2%),and ATP binding cassette G2(12.1%)as frequent targets underscore their importance in overcoming GSC-mediated resistance.Various therapeutic agents,notably RNA inhibitor/short hairpin RNA(27.3%),inhibitors(e.g.,LY294002,NVP-BEZ235)(24.2%),and monoclonal antibodies(e.g.,cetuximab)(9.1%),demonstrate versatility in targeted therapies.among 20 studies(60.6%),the most common effect on the chemotherapy resistance response is a reduction in temozolomide resistance(51.5%),followed by reductions in carmustine resistance(9.1%)and doxorubicin resistance(3.0%),while resistance to RTR is reduced in 42.4%of studies.CONCLUSION GSCs play a complex role in mediating radioresistance and chemoresistance,emphasizing the necessity for precision therapies that consider the heterogeneity within the GSC population and the dynamic tumor microenvironment to enhance outcomes for glioblastoma patients.展开更多
By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bi...By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.展开更多
Introduction: Prostate cancer (PCa) is the third most prevalent cancer among Malaysian males, often diagnosed at advanced stages, leading to suboptimal outcomes. While transrectal ultrasound-guided systematic biopsy (...Introduction: Prostate cancer (PCa) is the third most prevalent cancer among Malaysian males, often diagnosed at advanced stages, leading to suboptimal outcomes. While transrectal ultrasound-guided systematic biopsy (TRUS-SB) is the primary diagnostic method, prebiopsy multiparametric magnetic resonance imaging (mpMRI) is gaining popularity in identifying suspicious lesions. This study addresses the lack of comprehensive investigations into the efficacy of cognitive registration TRUS targeted biopsy (COG-TB) compared to conventional TRUS-SB, considering the resource limitations of the Malaysian healthcare system. Materials and Methods: A retrospective cohort study was conducted in two Malaysian healthcare facilities. 116 adult patients with a prostate-specific antigen (PSA) level of more than 4 ng/mL who underwent both COG-TB and TRUS-SB between October 2020 and March 2022 were included. Primary outcomes were cancer detection rate and histopathological outcomes, including Gleason score. Results: COG-TB showed a higher overall cancer detection rate (50%) compared to TRUS-SB (44%). Clinically significant cancer detection rates were similar between COG-TB and TRUS-SB (37.1%). Further analysis revealed that both COG-TB and TRUS-SB detected clinically significant cancer in 30.2% of patients, did not detect it in 56.0%, and had conflicting findings in 16 patients (p Conclusion: COG-TB and TRUS-SB have comparable detection rates for clinically significant prostate cancer, with COG-TB showing a higher tendency to detect insignificant prostate cancer. Further studies comparing these methods are warranted.展开更多
The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mas...The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mass is subjected to a zero-mean Gaussian white noise excitation,the main objective of this study is to maximise the efficiency of the targeted energy transfer in the system.A surrogate optimisation algorithm is proposed for this purpose and adopted for the stochastic framework.The optimisations are conducted separately for the nonlinear stiffness coefficient alone as well as for both the nonlinear stiffness and damping coefficients together.Three different optimisation cost functions,based on either energy of the system’s components or the dissipated energy,are considered.The results demonstrate some clear trends in values of the nonlinear energy sink coefficients and show the effect of different cost functions on the optimal values of the nonlinear system’s coefficients.展开更多
Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occ...Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occlusion,loss,scale variation,background clutter,illumination variation,etc.,which bring great challenges to realize accurate and real‐time tracking.Tracking based on Siamese networks promotes the application of deep learning in the field of target tracking,ensuring both accuracy and real‐time performance.However,due to its offline training,it is difficult to deal with the fast motion,serious occlusion,loss and deformation of the target during tracking.Therefore,it is very helpful to improve the performance of the Siamese networks by learning new features of the target quickly and updating the target position in time online.The broad learning system(BLS)has a simple network structure,high learning efficiency,and strong feature learning ability.Aiming at the problems of Siamese networks and the characteristics of BLS,a target tracking method based on BLS is proposed.The method combines offline training with fast online learning of new features,which not only adopts the powerful feature representation ability of deep learning,but also skillfully uses the BLS for re‐learning and re‐detection.The broad re‐learning information is used for re‐detection when the target tracking appears serious occlusion and so on,so as to change the selection of the Siamese networks search area,solve the problem that the search range cannot meet the fast motion of the target,and improve the adaptability.Experimental results show that the proposed method achieves good results on three challenging datasets and improves the performance of the basic algorithm in difficult scenarios.展开更多
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Re...Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.展开更多
Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein I...Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.展开更多
The dichotomized brain system is a concept that was generalized from the‘dual syndrome hypothesis’to explain the heterogeneity of cognitive impairment,in which anterior and posterior brain systems are independent bu...The dichotomized brain system is a concept that was generalized from the‘dual syndrome hypothesis’to explain the heterogeneity of cognitive impairment,in which anterior and posterior brain systems are independent but partially overlap.The dopaminergic system acts on the anterior brain and is responsible for executive function,working memory,and planning.In contrast,the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function.Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson’s disease.Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections.However,whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated.Furthermore,the precise role of the cerebellum in patients with Parkinson’s disease and cognitive impairment remains unclear.Therefore,in this review,we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition,as reported by previous studies,and investigated the role of the cerebellum in patients with Parkinson’s disease and cognitive impairment,as determined by functional neuroimaging.Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson’s disease.展开更多
BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of canc...BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.展开更多
A treat-to-target(T2T)approach applies the principles of early intervention and tight disease control to optimise long-term outcomes in Crohn's disease.The Selecting Therapeutic Targets in Inflammatory Bowel Disea...A treat-to-target(T2T)approach applies the principles of early intervention and tight disease control to optimise long-term outcomes in Crohn's disease.The Selecting Therapeutic Targets in Inflammatory Bowel Disease(STRIDE)-II guidelines specify short,intermediate,and long-term treatment goals,documenting specific treatment targets to be achieved at each of these timepoints.Scheduled appraisal of Crohn’s disease activity against pre-defined treatment targets at these timepoints remains central to determining whether current therapy should be continued or modified.Consensus treatment targets in Crohn’s disease comprise combination clinical and patient-reported outcome remission,in conjunction with biomarker normalisation and endoscopic healing.Although the STRIDE-II guidelines endorse the pursuit of endoscopic healing,clinicians must consider that this may not always be appropriate,acceptable,or achievable in all patients.This underscores the need to engage patients at the outset in an effort to personalise care and individualise treatment targets.The use of non-invasive biomarkers such as faecal calprotectin in conjunction with cross-sectional imaging techniques,particularly intestinal ultrasound,holds great promise;as do emerging treatment targets such as transmural healing.Two randomised clinical trials,namely,CALM and STARDUST,have evaluated the efficacy of a T2T approach in achieving endoscopic endpoints in patients with Crohn’s disease.Findings from these studies reflect that patient subgroups and Crohn’s disease characteristics likely to benefit most from a T2T approach,remain to be clarified.Moreover,outside of clinical trials,data pertaining to the real-world effectiveness of a T2T approach remains scare,highlighting the need for pragmatic real-world studies.Despite the obvious promise of a T2T approach,a lack of guidance to support its integration into real-world clinical practice has the potential to limit its uptake.This highlights the need to describe strategies,processes,and models of care capable of supporting the integration and execution of a T2T approach in real-world clinical practice.Hence,this review seeks to examine the current and emerging literature to provide clinicians with practical guidance on how to incorporate the principles of T2T into routine clinical practice for the management of Crohn’s disease.展开更多
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte...The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.展开更多
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic...The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.展开更多
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc...To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing.展开更多
Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with ...Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.展开更多
基金Supported by Project of National Social Science Foundation(09XMZ055)General Program of Scientific Research Project of Guangxi Provincial Department of Education (200911MS104)
文摘From subject,object and target subsystems,we analyze the rural human resource development system.The subject system includes government,education and training organizations,society,and rural human resource itself.Different development subject bears different responsibility.Object system includes farmers engaged in farming,farmer workers,rural unemployed people,rural students,rural left-behind people,and other people in rural areas.Different development object has different features.Development target system includes raising quality of rural human resource,keeping reasonable population size,optimizing structure of rural human resource,and improving vitality of rural human resource,etc.
基金supported by Dalian Youth Science and Technology Star Project(2020RQ121)the National Science Fund for Distinguished Young Scholars of China(31925031)+1 种基金Doctoral Scientific Research Foundation of Liaoning Province(2020-BS-211)Liaoning Province Education Administration(J2020101)。
文摘Cellular senescence is the results of aging and age-related diseases,and the development of anti-aging methods may improve health and extend longevity.The natural flavonol fisetin has been shown to antagonize senescence in vitro and increases longevity in vivo,but has poor water solubility and limited bioavailability.In this study,a food-grade and senescent cell-targeted delivery system for fisetin was developed based on whey protein isolate-galactooligosaccharides(WPI-GOS)Maillard conjugate,which could recognize senescence associatedβ-galactosidase in senescent cells.The fisetin nanoparticles possessed a high encapsulation efficiency,excellent dispersibility in water,good storage stability and well biocompatibility.Moreover,they could effectively accumulate and retain in senescent cells with excellent senescent cell-targeting efficacy,and inhibit the oxidative stress-induced cellular senescence in vitro.Thus,this novel nanoparticle system based on WPI-GOS Maillard conjugate showed promise to deliver hydrophobic bioactive ingredients like fisetin to senescent cells to improve their bioavailability and anti-senescence effect.
基金the National Natural Science Foundation of China(No.82003846)the Administration of Traditional Chinese Medicine of Guangdong Province,China(No.20212124).
文摘Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body.Tumor cells take up a large amount of glutamine to meet their rapid proliferation requirements,which is supported by the upregulation of glutamine transporters.Targeted inhibition of glutamine transporters effectively inhibits cell growth and proliferation in tumors.Among all cancers,digestive system malignant tumors(DSMTs)have the highest incidence and mortality rates,and the current therapeutic strategies for DSMTs are mainly surgical resection and chemotherapy.Due to the relatively low survival rate and severe side effects associated with DSMTs treatment,new treatment strategies are urgently required.This article summarizes the glutamine transporters involved in DSMTs and describes their role in DSMTs.Additionally,glutamine transportertarget drugs are discussed,providing theoretical guidance for the further development of drugs DSMTs treatment.
基金supported by the National Natural Science Foundation of China(41927801).
文摘To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.
基金supported by the Natural Science Foundation of Beijing Municipality(L234024)。
文摘Articular cartilage injury(ACI)remains one of the key challenges in regenerative medicine,as current treatment strategies do not result in ideal regeneration of hyaline-like cartilage.Enhancing endogenous repair via micro-RNAs(miRNAs)shows promise as a regenerative therapy.miRNA-140 and miRNA-455 are two key and promising candidates for regulating the chondrogenic differentiation of mesenchymal stem cells(MSCs).In this study,we innovatively synthesized a multifunctional tetrahedral framework in which a nucleic acid(tFNA)-based targeting miRNA codelivery system,named A-T-M,was used.With tFNAs as vehicles,miR-140 and miR-455 were connected to and modified on tFNAs,while Apt19S(a DNA aptamer targeting MSCs)was directly integrated into the nanocomplex.The relevant results showed that A-T-M efficiently delivered miR-140 and miR-455 into MSCs and subsequently regulated MSC chondrogenic differentiation through corresponding mechanisms.Interestingly,a synergistic effect between miR-140 and miR-455 was revealed.Furthermore,A-T-M successfully enhanced the endogenous repair capacity of articular cartilage in vivo and effectively inhibited hypertrophic chondrocyte formation.A-T-M provides a new perspective and strategy for the regeneration of articular cartilage,showing strong clinical application value in the future treatment of ACI.
文摘BACKGROUND Gliomas pose a significant challenge to effective treatment despite advancements in chemotherapy and radiotherapy.Glioma stem cells(GSCs),a subset within tumors,contribute to resistance,tumor heterogeneity,and plasticity.Recent studies reveal GSCs’role in therapeutic resistance,driven by DNA repair mechanisms and dynamic transitions between cellular states.Resistance mechanisms can involve different cellular pathways,most of which have been recently reported in the literature.Despite progress,targeted therapeutic approaches lack consensus due to GSCs’high plasticity.AIM To analyze targeted therapies against GSC-mediated resistance to radio-and chemotherapy in gliomas,focusing on underlying mechanisms.METHODS A systematic search was conducted across major medical databases(PubMed,Embase,and Cochrane Library)up to September 30,2023.The search strategy utilized relevant Medical Subject Heading terms and keywords related to including“glioma stem cells”,“radiotherapy”,“chemotherapy”,“resistance”,and“targeted therapies”.Studies included in this review were publications focusing on targeted therapies against the molecular mechanism of GSC-mediated re-sistance to radiotherapy resistance(RTR).RESULTS In a comprehensive review of 66 studies on stem cell therapies for SCI,452 papers were initially identified,with 203 chosen for full-text analysis.Among them,201 were deemed eligible after excluding 168 for various reasons.The temporal breakdown of studies illustrates this trend:2005-2010(33.3%),2011-2015(36.4%),and 2016-2022(30.3%).Key GSC models,particularly U87(33.3%),U251(15.2%),and T98G(15.2%),emerge as significant in research,reflecting their representativeness of glioma characteristics.Pathway analysis indicates a focus on phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin(mTOR)(27.3%)and Notch(12.1%)pathways,suggesting their crucial roles in resistance development.Targeted molecules with mTOR(18.2%),CHK1/2(15.2%),and ATP binding cassette G2(12.1%)as frequent targets underscore their importance in overcoming GSC-mediated resistance.Various therapeutic agents,notably RNA inhibitor/short hairpin RNA(27.3%),inhibitors(e.g.,LY294002,NVP-BEZ235)(24.2%),and monoclonal antibodies(e.g.,cetuximab)(9.1%),demonstrate versatility in targeted therapies.among 20 studies(60.6%),the most common effect on the chemotherapy resistance response is a reduction in temozolomide resistance(51.5%),followed by reductions in carmustine resistance(9.1%)and doxorubicin resistance(3.0%),while resistance to RTR is reduced in 42.4%of studies.CONCLUSION GSCs play a complex role in mediating radioresistance and chemoresistance,emphasizing the necessity for precision therapies that consider the heterogeneity within the GSC population and the dynamic tumor microenvironment to enhance outcomes for glioblastoma patients.
基金Supported by The Guangdong Basic and Applied Basic Research Foundation,China,No.2024A1515011236.
文摘By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.
文摘Introduction: Prostate cancer (PCa) is the third most prevalent cancer among Malaysian males, often diagnosed at advanced stages, leading to suboptimal outcomes. While transrectal ultrasound-guided systematic biopsy (TRUS-SB) is the primary diagnostic method, prebiopsy multiparametric magnetic resonance imaging (mpMRI) is gaining popularity in identifying suspicious lesions. This study addresses the lack of comprehensive investigations into the efficacy of cognitive registration TRUS targeted biopsy (COG-TB) compared to conventional TRUS-SB, considering the resource limitations of the Malaysian healthcare system. Materials and Methods: A retrospective cohort study was conducted in two Malaysian healthcare facilities. 116 adult patients with a prostate-specific antigen (PSA) level of more than 4 ng/mL who underwent both COG-TB and TRUS-SB between October 2020 and March 2022 were included. Primary outcomes were cancer detection rate and histopathological outcomes, including Gleason score. Results: COG-TB showed a higher overall cancer detection rate (50%) compared to TRUS-SB (44%). Clinically significant cancer detection rates were similar between COG-TB and TRUS-SB (37.1%). Further analysis revealed that both COG-TB and TRUS-SB detected clinically significant cancer in 30.2% of patients, did not detect it in 56.0%, and had conflicting findings in 16 patients (p Conclusion: COG-TB and TRUS-SB have comparable detection rates for clinically significant prostate cancer, with COG-TB showing a higher tendency to detect insignificant prostate cancer. Further studies comparing these methods are warranted.
基金funding for this work from NSF-CMMI 2009270 and EPSRC EP/V034391/1.
文摘The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mass is subjected to a zero-mean Gaussian white noise excitation,the main objective of this study is to maximise the efficiency of the targeted energy transfer in the system.A surrogate optimisation algorithm is proposed for this purpose and adopted for the stochastic framework.The optimisations are conducted separately for the nonlinear stiffness coefficient alone as well as for both the nonlinear stiffness and damping coefficients together.Three different optimisation cost functions,based on either energy of the system’s components or the dissipated energy,are considered.The results demonstrate some clear trends in values of the nonlinear energy sink coefficients and show the effect of different cost functions on the optimal values of the nonlinear system’s coefficients.
基金supported in part by the National Natural Science Foundation of China(under Grant Nos.51939001,61976033,U1813203,61803064,and 61751202)Natural Foundation Guidance Plan Project of Liaoning(2019‐ZD‐0151)+2 种基金Science&Technology Innovation Funds of Dalian(under Grant No.2018J11CY022)Fundamental Research Funds for the Central Universities(under Grant No.3132019345)Dalian High‐level Talents Innovation Support Program(Young Sci-ence and Technology Star Project)(under Grant No.2021RQ067).
文摘Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occlusion,loss,scale variation,background clutter,illumination variation,etc.,which bring great challenges to realize accurate and real‐time tracking.Tracking based on Siamese networks promotes the application of deep learning in the field of target tracking,ensuring both accuracy and real‐time performance.However,due to its offline training,it is difficult to deal with the fast motion,serious occlusion,loss and deformation of the target during tracking.Therefore,it is very helpful to improve the performance of the Siamese networks by learning new features of the target quickly and updating the target position in time online.The broad learning system(BLS)has a simple network structure,high learning efficiency,and strong feature learning ability.Aiming at the problems of Siamese networks and the characteristics of BLS,a target tracking method based on BLS is proposed.The method combines offline training with fast online learning of new features,which not only adopts the powerful feature representation ability of deep learning,but also skillfully uses the BLS for re‐learning and re‐detection.The broad re‐learning information is used for re‐detection when the target tracking appears serious occlusion and so on,so as to change the selection of the Siamese networks search area,solve the problem that the search range cannot meet the fast motion of the target,and improve the adaptability.Experimental results show that the proposed method achieves good results on three challenging datasets and improves the performance of the basic algorithm in difficult scenarios.
基金supported by the National Natural Science Foundation of China,Nos.82071382(to MZ),81601306(to HS)The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(to MZ)+5 种基金Jiangsu 333 High-Level Talent Training Project(2022)(to HS)The Jiangsu Maternal and Child Health Research Key Project,No.F202013(to HS)Jiangsu Talent Youth Medical Program,No.QNRC2016245(to HS)Shanghai Key Lab of Forensic Medicine,No.KF2102(to MZ)Suzhou Science and Technology Development Project,No.SYS2020089(to MZ)The Fifth Batch of Gusu District Health Talent Training Project,No.GSWS2019060(to HS)。
文摘Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.
基金supported by the National Natural Science Foundation of China(31640001 and T2350005 to C.X.,U21A20148 to X.Z.and C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)+2 种基金Natural Science Foundation of Hainan Province(No.822RC703 for J.L.)Foundation of Hainan Educational Committee(No.Hnky2022-27 for J.L.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.
基金supported by the National Natural Science Foundation of China,No.82071419Key Research and Development Program of Guangzhou,No.202206010086+1 种基金High-level Hospital Construction Project,No.DFJH201907Supporting Research Funds for Outstanding Young Medical Talents in Guangdong Province,No.KJ012019442(all to YZ)。
文摘The dichotomized brain system is a concept that was generalized from the‘dual syndrome hypothesis’to explain the heterogeneity of cognitive impairment,in which anterior and posterior brain systems are independent but partially overlap.The dopaminergic system acts on the anterior brain and is responsible for executive function,working memory,and planning.In contrast,the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function.Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson’s disease.Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections.However,whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated.Furthermore,the precise role of the cerebellum in patients with Parkinson’s disease and cognitive impairment remains unclear.Therefore,in this review,we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition,as reported by previous studies,and investigated the role of the cerebellum in patients with Parkinson’s disease and cognitive impairment,as determined by functional neuroimaging.Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson’s disease.
基金Supported by National Natural Science Foundation of China,No.82360329Inner Mongolia Medical University General Project,No.YKD2023MS047Inner Mongolia Health Commission Science and Technology Plan Project,No.202201275.
文摘BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.
文摘A treat-to-target(T2T)approach applies the principles of early intervention and tight disease control to optimise long-term outcomes in Crohn's disease.The Selecting Therapeutic Targets in Inflammatory Bowel Disease(STRIDE)-II guidelines specify short,intermediate,and long-term treatment goals,documenting specific treatment targets to be achieved at each of these timepoints.Scheduled appraisal of Crohn’s disease activity against pre-defined treatment targets at these timepoints remains central to determining whether current therapy should be continued or modified.Consensus treatment targets in Crohn’s disease comprise combination clinical and patient-reported outcome remission,in conjunction with biomarker normalisation and endoscopic healing.Although the STRIDE-II guidelines endorse the pursuit of endoscopic healing,clinicians must consider that this may not always be appropriate,acceptable,or achievable in all patients.This underscores the need to engage patients at the outset in an effort to personalise care and individualise treatment targets.The use of non-invasive biomarkers such as faecal calprotectin in conjunction with cross-sectional imaging techniques,particularly intestinal ultrasound,holds great promise;as do emerging treatment targets such as transmural healing.Two randomised clinical trials,namely,CALM and STARDUST,have evaluated the efficacy of a T2T approach in achieving endoscopic endpoints in patients with Crohn’s disease.Findings from these studies reflect that patient subgroups and Crohn’s disease characteristics likely to benefit most from a T2T approach,remain to be clarified.Moreover,outside of clinical trials,data pertaining to the real-world effectiveness of a T2T approach remains scare,highlighting the need for pragmatic real-world studies.Despite the obvious promise of a T2T approach,a lack of guidance to support its integration into real-world clinical practice has the potential to limit its uptake.This highlights the need to describe strategies,processes,and models of care capable of supporting the integration and execution of a T2T approach in real-world clinical practice.Hence,this review seeks to examine the current and emerging literature to provide clinicians with practical guidance on how to incorporate the principles of T2T into routine clinical practice for the management of Crohn’s disease.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.
基金The Fundamental Research Funds for the Central Universities,HUST,Grant/Award Number:2021GCRC046The Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Grant/Award Number:FZ2022005Natural Science Foundation of Hubei Province,China,Grant/Award Number:2022CFA031。
文摘The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.
基金the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18).
文摘The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.
基金funded by the General Project of Key Research and Develop-ment Plan of Shaanxi Province(No.2022NY-087).
文摘To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing.
基金Supported by the National Natural Science Foundation of China(41802177,42272188)PetroChina Basic Technology Research and Development Project(2021DJ0206,2022DJ0507)Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04).
文摘Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.