The quench sensitivity of 6351 alloy was determined by the time temperature-transformation(TTT) curves and time temperature-property(TTP) curves by an interrupted quench technique with measurement of as-aged hardn...The quench sensitivity of 6351 alloy was determined by the time temperature-transformation(TTT) curves and time temperature-property(TTP) curves by an interrupted quench technique with measurement of as-aged hardness and as-quenched electro-conductivity.The microstructure transformation during isothermal treatment was studied by the transmission electron microscopy(TEM) and Avrami equation.The results showed that the electro-conductivity of the 6351 alloy increased and the hardness decreased with prolonging the holding time at a certain isothermal temperature.The TEM observation indicated that the supersaturated solid solution decomposed and needles β″ precipitated at the initial stage of isothermal holding.With the prolongation of holding time at the nose temperature,rod β' and plate β phases formed.The isothermal transformation rate at 360℃ was the fastest,and became slow at 280℃ and reached the slowest at 440℃.The nose temperatures of the TTT and TTP curves were about 360℃ and the high quench sensitive temperature range was 230 430℃.The quench factor analysis indicated that the cooling rate should be more than 15℃/s in the quench sensitive areas in order to get optimal mechanical properties.展开更多
A proper addition of Mn to Fe-C alloys could delay the isothermal transformation and change remarkably the TTT-curves to bay-like shape.The concentration of Mn at the α/γ interphase boundary and thir partition betwe...A proper addition of Mn to Fe-C alloys could delay the isothermal transformation and change remarkably the TTT-curves to bay-like shape.The concentration of Mn at the α/γ interphase boundary and thir partition between α- and γ- phase were measured by STEM/TEM-EDAX.The results show that the partition of Mn diminishes gradually as the reaction temperature decreases.There exists a certain temperature range with the strong- est Mn concentration spike at the interphase although no Mn partition is found between austenite and ferrite,and this temperature range is correspondent with the bay-temperature on TTT curves of the alloys.It is thus suggests that the change of TTT-curve configuration is due to the partition of alloy elements.The bay-like shape is attributed to the solute drag ef- fect and the solute drag-like effect caused by the enrichment of Mn at the α/γ interphase.展开更多
The crystallization behavior of mold fluxes containing 0-8 mass% TiO2 was investigated using the single hot therrnocouple technique (SHTT) and X ray diffraction (XRD) to study the possible effects on the coordinat...The crystallization behavior of mold fluxes containing 0-8 mass% TiO2 was investigated using the single hot therrnocouple technique (SHTT) and X ray diffraction (XRD) to study the possible effects on the coordination of heat transfer control and strand lubrication for casting crack sensitive peritectic steels. Time-temperature-transforma tion (TTT) and continuous-cooling transformation (CCT) curves were plotted using the data obtained from SHTT to characterize the crystallization of the mold fluxes. The results showed that crystallization of the mold fluxes during isothermal and non-isothermal processes was suppressed with TiO2 addition. From the TTT curves, it could be seen that the incubation and growth time of crystallization increased significantly with TiO2 addition. The CCT curves showed that the crystallization temperature initially decreased, and then suddenly increased with increasing the TiO2 content. XRD analysis suggested the presence of cuspidine in the mold fluxes with lower TiO2 content (〈4 mass%) , while both perovskite and cuspidine were detected in the mold fluxes when the TiO2 content was increased to 8 mass%. In addition, the growth mechanisms of the crystals changed during the isothermal crystallization process from interface controlled growth to diffusion-controlled growth with increasing the TiO2 content.展开更多
基金Project(2012M511552) supported by China Postdoctoral Science FoundationProject(2009A080205001) supported by the State Key Fundamental Research Program of China
文摘The quench sensitivity of 6351 alloy was determined by the time temperature-transformation(TTT) curves and time temperature-property(TTP) curves by an interrupted quench technique with measurement of as-aged hardness and as-quenched electro-conductivity.The microstructure transformation during isothermal treatment was studied by the transmission electron microscopy(TEM) and Avrami equation.The results showed that the electro-conductivity of the 6351 alloy increased and the hardness decreased with prolonging the holding time at a certain isothermal temperature.The TEM observation indicated that the supersaturated solid solution decomposed and needles β″ precipitated at the initial stage of isothermal holding.With the prolongation of holding time at the nose temperature,rod β' and plate β phases formed.The isothermal transformation rate at 360℃ was the fastest,and became slow at 280℃ and reached the slowest at 440℃.The nose temperatures of the TTT and TTP curves were about 360℃ and the high quench sensitive temperature range was 230 430℃.The quench factor analysis indicated that the cooling rate should be more than 15℃/s in the quench sensitive areas in order to get optimal mechanical properties.
文摘A proper addition of Mn to Fe-C alloys could delay the isothermal transformation and change remarkably the TTT-curves to bay-like shape.The concentration of Mn at the α/γ interphase boundary and thir partition between α- and γ- phase were measured by STEM/TEM-EDAX.The results show that the partition of Mn diminishes gradually as the reaction temperature decreases.There exists a certain temperature range with the strong- est Mn concentration spike at the interphase although no Mn partition is found between austenite and ferrite,and this temperature range is correspondent with the bay-temperature on TTT curves of the alloys.It is thus suggests that the change of TTT-curve configuration is due to the partition of alloy elements.The bay-like shape is attributed to the solute drag ef- fect and the solute drag-like effect caused by the enrichment of Mn at the α/γ interphase.
文摘The crystallization behavior of mold fluxes containing 0-8 mass% TiO2 was investigated using the single hot therrnocouple technique (SHTT) and X ray diffraction (XRD) to study the possible effects on the coordination of heat transfer control and strand lubrication for casting crack sensitive peritectic steels. Time-temperature-transforma tion (TTT) and continuous-cooling transformation (CCT) curves were plotted using the data obtained from SHTT to characterize the crystallization of the mold fluxes. The results showed that crystallization of the mold fluxes during isothermal and non-isothermal processes was suppressed with TiO2 addition. From the TTT curves, it could be seen that the incubation and growth time of crystallization increased significantly with TiO2 addition. The CCT curves showed that the crystallization temperature initially decreased, and then suddenly increased with increasing the TiO2 content. XRD analysis suggested the presence of cuspidine in the mold fluxes with lower TiO2 content (〈4 mass%) , while both perovskite and cuspidine were detected in the mold fluxes when the TiO2 content was increased to 8 mass%. In addition, the growth mechanisms of the crystals changed during the isothermal crystallization process from interface controlled growth to diffusion-controlled growth with increasing the TiO2 content.