Polydiacetylene(PDA)is one kind of the conjugated polymer with layered structure,which can serve as a host to accommodate the guest components through intercalation.In these intercalated PDAs,some of them were reporte...Polydiacetylene(PDA)is one kind of the conjugated polymer with layered structure,which can serve as a host to accommodate the guest components through intercalation.In these intercalated PDAs,some of them were reported to have a nearly perfect organized structure and perform completely reversible thermochromism.Till now,these reported intercalated PDAs were made by only introducing a single component for intercalation.Here,we chose 10,12-pentacosadiynoic acid(PCDA)as the monomer,of which the carboxyl-terminal groups can interact with either Tb^3+ ions or melamines(MAs).When the feeding molar ratio of PCDA,MA,and Tb^3+ ion was 3:267:1,only Tb^3+ ions were intercalated though excess MAs existed.Such Tb^3+- intercalated poly-PCDA exhibited completely reversible thermochromism,where almost all the carboxyl groups interacted with Tb^3+ ions to form the nearly perfect structure.When the feeding molar ratio of PCDA,MA,and Tb^3+ ion was 3:267:0.6,both Tb^3+ ions and MAs were intercalated.There existed some defects in the imperfect MA-intercalated domains and at the domain boundaries.The MA/Tb^3+- intercalated poly-PCDA exhibits partially reversible thermochromism,where the backbones near the defects are hard to return the initial conformation,while the rest,those at nearly perfect organized domains,are still able to restore the initial conformation.展开更多
Tb3+ ions were incorporated in P Si matrix material through a sol gel process. Luminescence properties of Tb3+as a function of dopant, firing temperature, composition and structure of matrices were investigated. The g...Tb3+ ions were incorporated in P Si matrix material through a sol gel process. Luminescence properties of Tb3+as a function of dopant, firing temperature, composition and structure of matrices were investigated. The gels synthesized by the reaction of P2O5 or H3PO4 with tetraethoxy silane and TbCl3 as dopant were fired in air from the temperature 25~1000℃to form P Si crystalline phase. The crystal structure was determined by powder X ray diffraction. Si5O(PO4)6 were the only crystalline phase and belong to hexagonal crystal system. The emission of 5D4 7F5(~545nm) transition of Tb3+in the P Si system iscomposed of two peaks. The amount of doping Tb3+varied from 0.664%to 1.644%, and no obvious concentration quenching was observed in this doping concentration range. The intensity of Tb3+emission increased with firing temperatureincreasing and becomes stable at 800~1000℃.展开更多
The three sets of crystal field parameters (CFPs) obtained from spectroscopic and magnetic susceptibility studies of Tb3+(4f^8) ions in TbAlO3 by Gruber et al. (J. Lumin. 128 (2008) 1271) were reanalyzed. The...The three sets of crystal field parameters (CFPs) obtained from spectroscopic and magnetic susceptibility studies of Tb3+(4f^8) ions in TbAlO3 by Gruber et al. (J. Lumin. 128 (2008) 1271) were reanalyzed. These sets, fitted from experimental energy levels, are physically equivalent and correspond to specific choices of the axis system. Proper interpretation of experimental data for Tb3+ ions at monoclinic C8 symmetry sites in TbAlO3 crystal requires clarification of several intricate low syrmnetry aspects, namely, (a) three equivalent forms of monoclinic CF Hamiltouian, (b) relative orientation of the crystallographic axis system w.r.t, the symmetry-adapted axis system, (c) monoclinic standardization of CFPs, (d) distinction between the actual and apparent low symmetry effects exhibited by CFPs, and (e) nominal nature of all fitted CFP sets. For this purpose, modeling of CFPs for Tb3+ in TbAlO3 was carried out using at the first stage only the Coulomb, i.e. point charge, eonlribntions in the exchange charge model. The point charge model calculated CFPs disagree with the experimental CFPs, especially the rank k=6 CFPs. To explain this discrepancy and to verify the correcmess of the theoretical CFP calculations additionally the superposition model was employed. The methods of analysis and modeling of CFP sets for monoclinic symmetry cases proposed here proved useful for the studied case as well as might be used for other ion-host systems exhibiting monoclinic or triclinic local site symmetry. Partial results for Tb3+ ions in TbAlO3 were presented here, whereas detailed results were given in a follow-up paper.展开更多
基金supported by the Programs of the Shanghai Pujiang Program(No.18PJ1401500)the National Natural Science Foundation of China(No.21801046,No.51721002,No.21574025 and No.21871057)the Ministry of Science and Technology(2016YFA0203302)。
文摘Polydiacetylene(PDA)is one kind of the conjugated polymer with layered structure,which can serve as a host to accommodate the guest components through intercalation.In these intercalated PDAs,some of them were reported to have a nearly perfect organized structure and perform completely reversible thermochromism.Till now,these reported intercalated PDAs were made by only introducing a single component for intercalation.Here,we chose 10,12-pentacosadiynoic acid(PCDA)as the monomer,of which the carboxyl-terminal groups can interact with either Tb^3+ ions or melamines(MAs).When the feeding molar ratio of PCDA,MA,and Tb^3+ ion was 3:267:1,only Tb^3+ ions were intercalated though excess MAs existed.Such Tb^3+- intercalated poly-PCDA exhibited completely reversible thermochromism,where almost all the carboxyl groups interacted with Tb^3+ ions to form the nearly perfect structure.When the feeding molar ratio of PCDA,MA,and Tb^3+ ion was 3:267:0.6,both Tb^3+ ions and MAs were intercalated.There existed some defects in the imperfect MA-intercalated domains and at the domain boundaries.The MA/Tb^3+- intercalated poly-PCDA exhibits partially reversible thermochromism,where the backbones near the defects are hard to return the initial conformation,while the rest,those at nearly perfect organized domains,are still able to restore the initial conformation.
文摘Tb3+ ions were incorporated in P Si matrix material through a sol gel process. Luminescence properties of Tb3+as a function of dopant, firing temperature, composition and structure of matrices were investigated. The gels synthesized by the reaction of P2O5 or H3PO4 with tetraethoxy silane and TbCl3 as dopant were fired in air from the temperature 25~1000℃to form P Si crystalline phase. The crystal structure was determined by powder X ray diffraction. Si5O(PO4)6 were the only crystalline phase and belong to hexagonal crystal system. The emission of 5D4 7F5(~545nm) transition of Tb3+in the P Si system iscomposed of two peaks. The amount of doping Tb3+varied from 0.664%to 1.644%, and no obvious concentration quenching was observed in this doping concentration range. The intensity of Tb3+emission increased with firing temperatureincreasing and becomes stable at 800~1000℃.
基金supported by the research grant from the Polish Ministry of Science and Tertiary Education in the years 2006-2009
文摘The three sets of crystal field parameters (CFPs) obtained from spectroscopic and magnetic susceptibility studies of Tb3+(4f^8) ions in TbAlO3 by Gruber et al. (J. Lumin. 128 (2008) 1271) were reanalyzed. These sets, fitted from experimental energy levels, are physically equivalent and correspond to specific choices of the axis system. Proper interpretation of experimental data for Tb3+ ions at monoclinic C8 symmetry sites in TbAlO3 crystal requires clarification of several intricate low syrmnetry aspects, namely, (a) three equivalent forms of monoclinic CF Hamiltouian, (b) relative orientation of the crystallographic axis system w.r.t, the symmetry-adapted axis system, (c) monoclinic standardization of CFPs, (d) distinction between the actual and apparent low symmetry effects exhibited by CFPs, and (e) nominal nature of all fitted CFP sets. For this purpose, modeling of CFPs for Tb3+ in TbAlO3 was carried out using at the first stage only the Coulomb, i.e. point charge, eonlribntions in the exchange charge model. The point charge model calculated CFPs disagree with the experimental CFPs, especially the rank k=6 CFPs. To explain this discrepancy and to verify the correcmess of the theoretical CFP calculations additionally the superposition model was employed. The methods of analysis and modeling of CFP sets for monoclinic symmetry cases proposed here proved useful for the studied case as well as might be used for other ion-host systems exhibiting monoclinic or triclinic local site symmetry. Partial results for Tb3+ ions in TbAlO3 were presented here, whereas detailed results were given in a follow-up paper.