A charged particle array named MATE-PA,which serves as an auxiliary detector system for a Multi-purpose Active-target Time projection chamber used in nuclear astrophysical and exotic beam Experiments(MATE),was constru...A charged particle array named MATE-PA,which serves as an auxiliary detector system for a Multi-purpose Active-target Time projection chamber used in nuclear astrophysical and exotic beam Experiments(MATE),was constructed.The array comprised of 20 single-sided strip-silicon detectors covering approximately 10%of the solid angle.The detectors facilitated the detection of reaction-induced charged particles that penetrate the active volume of the MATE.The performance of MATE-PA has been experimentally studied using an alpha source and a 36-MeV 14 N beam injected into the MATE chamber on the radioactive ion beam line in Lanzhou(RIBLL).The chamber was filled with a gas mixture of 95%4 He and 5%CO_(2) at a pressure of 500 mbar.The results indicated good separation of light-charged particles using the forward double-layer silicon detectors of MATE-PA.The energy resolution of the Si detectors was deduced to be approximately 1%(σ)for an energy loss of approximately 10 MeV caused by theαparticles.The inclusion of MATE-PA improves particle identification and increases the dynamic range of the kinetic energy of charged particles,particularly that of theαparticles,up to approximately 15 MeV.展开更多
Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in...Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in the environment as water.This paper presents the design,simulation,and development of a tritium monitoring device utilizing a plastic scintillation fiber(PSF)array.Experimental validation confirmed the device’s detection efficiency and minimum detectable activity.The recorded detection efficiency of the device is 1.6×10^(-3),which exceeds the theoretically simulated value of 4×10^(-4)by four times.Without shielding,the device can achieve a minimum detectable activity of 3165 Bq L^(-1)over a 1600-second measurement duration.According to simulation and experimental results,enhancing detection efficiency is possible by increasing the number and length of PSFs and implementing rigorous shielding measures.Additionally,reducing the diameter of PSFs can also improve detection efficiency.The minimum detectable activity of the device can be further reduced using the aforementioned methods.展开更多
Total absorption gamma-ray spectroscopy(TAGS)is a powerful tool for measuring complexγ transitions,which has been effectively applied to the study of reactor decay heat.This paper presents the design of a new TAGS de...Total absorption gamma-ray spectroscopy(TAGS)is a powerful tool for measuring complexγ transitions,which has been effectively applied to the study of reactor decay heat.This paper presents the design of a new TAGS detector,the large-scale modular BGO detection array(LAMBDA),tailored for measuringβ-decay intensity distributions of fission products.The modular design allows the LAMBDA detectors to be assembled in various configurations.The final version of LAMBDA consists of 102 identical 60 mm×60 mm×120 mm BGO crystals and exhibits a high full-energy peak efficiency exceeding 80%at 0.5∼8 MeV based on a Monte Carlo simulation.Currently,approximately half of the LAMBDA modules have been manufactured.Tests usingγ-ray sources and nuclear reactions demonstrated favorable energy resolution,energy linearity,and efficiency uniformity across the modules.Forty-eight modules have been integrated into the prototype LAMBDA-I.The capability of LAMBDA-I inβ-delayed-decay experiments was evaluated by commissioning measurements using the ^(152)Eu source.展开更多
For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the ...For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.展开更多
A new and innovative detector system based on a silicon strip detector dedicated to the study of the reaction induced by lighter radioactive beams is described herein.The detector system consists of five sets of three...A new and innovative detector system based on a silicon strip detector dedicated to the study of the reaction induced by lighter radioactive beams is described herein.The detector system consists of five sets of three types of telescopes,which are successfully used to measure the angular distributions of both elastic scattering and breakup simultaneously, on the Radioactive Ion Beam Line in Lanzhou at Heavy Ion Research Facility in Lanzhou. This silicon detector array is used to measure the elastic scattering angular distributions of ^(11) Be on a ^(208) Pb target at E_(lab) = 140 and 209 MeV. A comparison of the Monte Carlo simulations with the experimental results shows a reasonable consistency.展开更多
The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore ...The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore the origin of high-energy cosmic rays of the universe and to push forward the frontier of new physics.To simplify the WCDA's readout electronics,a prototype of a front-end readout for an application-specific integrated circuit(ASIC) is designed based on the timeover-threshold method to achieve charge-to-time conversion.High-precision time measurement and charge measurement are necessary over a full dynamic range[1-4000photoelectrons(P.E.)].To evaluate the performance of this ASIC,a test system is designed that includes the front-end ASIC test module,digitization module,and test software.The first module needs to be customized for different ASIC versions,whereas the digitization module and test software are tested for general-purpose use.In the digitization module,a field programmable gate array-based time-todigital converter is designed with a bin size of 333 ps,which also integrates an inter-integrated circuit to configure the ASIC test module,and a universal serial bus interface is designed to transfer data to the remote computer.Test results indicate that the time resolution is better than 0.5 ns,and the charge resolution is better than 30%root mean square(RMS) at 1 P.E.and 3%RMS at 4000 P.E.,which are beyond the application requirements.展开更多
A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was perfo...A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was performed to explore the effects of beam drifts in different directions and distances on the angular distribution of the Rutherford scattering,as measured by the detector array.The results indicate that when the beam drift distance is less than 2.0 mm,the symmetry of the detector array can maintain a count error of less than 5%.This confirms the property of the detector array for RIB experiments.Furthermore,the simulation was validated through the elastic scattering angular distributions of 6;7 Li measured by the detector array in 6;7Li t209 Bi experiments at different energies.展开更多
A simple and accurate high-performance liquid chromatography(HPLC)coupled with diode array detector(DAD)and evaporative light scattering detector(ELSD)was established for the determination of six bioactive compo...A simple and accurate high-performance liquid chromatography(HPLC)coupled with diode array detector(DAD)and evaporative light scattering detector(ELSD)was established for the determination of six bioactive compounds in Zhenqi Fuzheng preparation(ZFP).The monitoring wavelengths were 254,275 and 328 nm.Under the optimum conditions,good separation was achieved,and the assay was fully validated in respect of precision,repeatability and accuracy.The proposed method was successfully applied to quantify the six ingredients in 31 batches of ZFP samples and evaluate the variation by hierarchical cluster analysis(HCA),which demonstrated significant variations on the content of these compounds in the samples from different manufacturers with different preparation procedures.The developed HPLC method can be used as a valid analytical method to evaluate the intrinsic quality of this preparation.展开更多
The MultiCarrier Code Division Multiple Access (MC-CDMA) scheme is promising for relieving capacity limit problems of Direct Sequence (DS-) CDMA systems due to serious InterChip Interference (ICI) and MultiUser Interf...The MultiCarrier Code Division Multiple Access (MC-CDMA) scheme is promising for relieving capacity limit problems of Direct Sequence (DS-) CDMA systems due to serious InterChip Interference (ICI) and MultiUser Interference (MUI) in high-data-rate wireless communication systems. In this paper, the Uniform Linear Array (ULA) is applied to the base station of macrocellular MC-CDMA systems in a frequency-selective fading channel environment. A joint space-frequency multiuser symbol sequence detector is developed for all active users within one macrocell without space-frequency channel estimation. Simultaneously, Directions-Of-Arrivals (DOAs) of all active users can also be estimated. By dividing the ULA into two identical overlapping subarrays, a specific auxiliary matrix is constructed, which includes both symbol sequence and DOA information of all active users. Then, based on the subspace method, performing the eigen decomposition on such auxiliary matrix, the closed-form solution of symbol sequences and DOAs for all active users can be obtained. In comparison with schemes based on channel estimation, our algorithm need not explicitly estimate the space-frequency channel for each active user,so it has lower computation complexity. Extensive computer simulations demonstrate the overall performance of this novel scheme.展开更多
To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test ...To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.展开更多
The spatial resolution of a commercial two-dimensional(2D)ionization chamber(IC)array is limited by the size of the individual detector and the center-to-center distance between sensors.For dose distributions with are...The spatial resolution of a commercial two-dimensional(2D)ionization chamber(IC)array is limited by the size of the individual detector and the center-to-center distance between sensors.For dose distributions with areas of steep dose gradients,inter-detector dose values are derived by the interpolation of nearby detector readings in the conventional mathematical interpolation of 2D IC array measurements.This may introduce significant errors,particularly in proton spot scanning radiotherapy.In this study,by combining logfile-based reconstructed dose values and detector measurements with the Laplacian pyramid image blending method,a novel method is proposed to obtain a reformatted dose distribution that provides an improved estimation of the delivered dose distribution with high spatial resolution.Meanwhile,the similarity between the measured original data and the downsampled logfilebased reconstructed dose is regarded as the confidence of the reformatted dose distribution.Furthermore,we quantify the performance benefits of this new approach by directly comparing the reformatted dose distributions with 2D IC array detector mathematically interpolated measurements and original low-resolution measurements.The result shows that this new method is better than the mathematical interpolation and achieves gamma pass rates similar to those of the original low-resolution measurements.The reformatted dose distributions generally yield a confidence exceeding 95%.展开更多
Purpose: To study the dosimetric characteristics of amorphous silicon Electronic Portal Imaging Device EPID and 2D array detector for dose verification of radiotherapy treatment plans, and the quality assurance QA tes...Purpose: To study the dosimetric characteristics of amorphous silicon Electronic Portal Imaging Device EPID and 2D array detector for dose verification of radiotherapy treatment plans, and the quality assurance QA testing of IMRT was investigated. Materials and methods: All measurements were done with Varian IX linear accelerator, aSi-1000 EPID and 2D array detector. The dose linearity, reproducibility, output factors, dose rate, SDD and response with slap phantom thickness have been measured and compared against those measured by ion chamber. Results: The characteristics of EPID and 2D array: the response of EPID agreed with 2D array and ion chamber 0.6cc. EPID and 2D array showed short-term output reproducibility with SD = 0.1%. The dose rates of 2D array SD = ±0.7%, EPID = ±0.4% compared with a 0.6 cc SD = ±0.5%. Output factor measurements for the central chamber of the EPID and 2D array showed no considerable deviation from ion chamber measurements. Measurement of beam profiles with the EPID and 2D array matched very well with the ion chamber measurements in the water phantom. The EPID is more sensitive to lower energy photons by increasing solid water phantom thickness. The mean and standard deviation passing rates (γ%≤1) for film, 2D array and EPID for 30 IMRT fields of five patients were 95.93 ± 0.96%, 99.05 ± 0.24%, and 99.37 ± 0.12%, respectively. Conclusion: The study shows that EPID and 2D array are a reliable and accurate dosimeter and a useful tool for quality assurance. We found that the EPID was more accurate compared with both 2D array and ion chamber. The gamma criterion of 3%/3 mm is the most suitable criteria for IMRT plans of QA.展开更多
With the development of silicon photomultiplier(SiPM)technology,front-end electronics for SiPM signal processing have been highly sought after in various fields.A compact 64-channel front-end electronics(FEE)system ac...With the development of silicon photomultiplier(SiPM)technology,front-end electronics for SiPM signal processing have been highly sought after in various fields.A compact 64-channel front-end electronics(FEE)system achieved by fieldprogrammable gate array-based charge-to-digital converter(FPGA-QDC)technology was built and developed.The FEE consists of an analog board and FPGA board.The analog board incorporates commercial amplifiers,resistors,and capacitors.The FPGA board is composed of a low-cost FPGA.The electronics performance of the FEE was evaluated in terms of noise,linearity,and uniformity.A positron emission tomography(PET)detector with three different readout configurations was designed to validate the readout capability of the FEE for SiPM-based detectors.The PET detector was made of a 15×15 lutetium–yttrium oxyorthosilicate(LYSO)crystal array directly coupled with a SiPM array detector.The experimental results show that FEE can process dual-polarity charge signals from the SiPM detectors.In addition,it shows a good energy resolution for 511-keV gamma photons under the dual-end readout for the LYSO crystal array irradiated by a Na-22 source.Overall,the FEE based on FPGA-QDC shows promise for application in SiPM-based radiation detectors.展开更多
A particle detector array designed for light-charged particles, known as the CsI-bowl, was built for exit channel selection for in-beam γ-ray spectroscopy experiments. This device is composed of 64 CsI(Tl) detectors,...A particle detector array designed for light-charged particles, known as the CsI-bowl, was built for exit channel selection for in-beam γ-ray spectroscopy experiments. This device is composed of 64 CsI(Tl) detectors, organized in a structure reminiscent of a tea-bowl. High quantum efficiency photodiodes, characterized by their minimal mass, were employed to collect scintillation light. Its design, construction, particle identification resolution, and its effectiveness in relation to exit channel selection are described in this paper. In source tests, the optimal figure of merit for the identification of α-particles and γ-rays using the charge comparison method was found to be 3.3 and 12.1 for CsI detectors coupled to photodiodes and avalanche photodiodes, respectively. The CsI-bowl demonstrated effectiveness in identifying particles, specifically the emission of protons and α-particles in the58Ni(19F, xpyn) fusion–evaporation reaction, thereby enabling the selection of the desired exit channels.展开更多
The performance of superconducting nanowire single-photon detector (SNSPD) involving niobium nitride with the fan coupling antenna array is analyzed. The SNSPD has a high detection efficiency and counting rate. Hydr...The performance of superconducting nanowire single-photon detector (SNSPD) involving niobium nitride with the fan coupling antenna array is analyzed. The SNSPD has a high detection efficiency and counting rate. Hydrogen silsesquioxane and niobium nitride are filled in the gold grating deposited on the substrate in which the fan coupling antenna arrays are embedded. By changing the position of the fan coupling antenna array, the maximum area of optical intensity is obtained and the photon collection efficiency is increased by 26.5 times. The detection efficiency of SNSPD is improved without changing the detection speed. These parameters are important for designing a practical single-photon detector,展开更多
Room-temperature terahertz (THz) detectors indicate a great potential in the imaging application because of their real-time, compact bulk, and wide spectral band responding characteristics. THz detectors with differ...Room-temperature terahertz (THz) detectors indicate a great potential in the imaging application because of their real-time, compact bulk, and wide spectral band responding characteristics. THz detectors with different dimensions based on a micro-bridge structure have been designed and fabricated to get optimized micro-bolometer parameters from the test results of membrane deformation. A nanostructured titanium (Ti) thin film absorber is integrated in the micro-bridge structure of the VOx micro-bolometer by a combined process of magnetron sputtering and reactive ion etching (RIE), and its improvement of THz absorption is verified by an optical characteristics mesurement. Continuous-wave THz detection and imaging are demonstrated by using a 2.52 THz far infrared CO2 laser and a 320x240 vanadium oxide micro-bolometer focal plane array with an optimized cell structure. With this detecting system, THz imaging of metal concealed in a wiping cloth and an envelope is demonstrated, respectively.展开更多
High-throughput powder X-ray diffraction(XRD)with white X-ray beam and an energy-dispersive detector array is demonstrated in this work on a CeO;powder sample on a bending magnet synchrotron beamline at the Shanghai S...High-throughput powder X-ray diffraction(XRD)with white X-ray beam and an energy-dispersive detector array is demonstrated in this work on a CeO;powder sample on a bending magnet synchrotron beamline at the Shanghai Synchrotron Radiation Facility(SSRF),using a simulated energy-dispersive array detector consisting of a spatially scanning silicon-drift detector(SDD).Careful analysis and corrections are applied to account for various experimental hardware-related and diffraction angle-related factors.The resulting diffraction patterns show that the relative strength between different diffraction peaks from energy-dispersive XRD(EDXRD)spectra is consistent with that from angle-resolved XRD(ARXRD),which is necessary for analyzing crystal structures for unknown samples.The X-ray fluorescence(XRF)signal is collected simultaneously.XRF counts from all pixels are integrated directly by energy,while the diffraction spectra are integrated by d-spacing,resulting in a much improved peak strength and signal-to-noise(S/N)ratio for the array detector.In comparison with ARXRD,the diffraction signal generated by a white X-ray beam over monochromic light under the experimental conditions is about 104 times higher.The full width at half maximum(FWHM)of the peaks in q-space is found to be dependent on the energy resolution of the detector,the angle span of the detector,and the diffraction angle.It is possible for EDXRD to achieve the same or even smaller FWHM as ARXRD under the energy resolution of the current detector if the experimental parameters are properly chosen.展开更多
Purpose: This study provides a simple protocol for validation of the gamma passing rates and to identify the optimum values of % dose and mm criteria for dose distributions measured with a detector array. Methods: We ...Purpose: This study provides a simple protocol for validation of the gamma passing rates and to identify the optimum values of % dose and mm criteria for dose distributions measured with a detector array. Methods: We chose ArcCHECK detector array to illustrate the concepts. We used plans with uniform or quasi-uniform dose distributions along the detector array for testing in the presence of dose errors. For testing sensitivity to spatial shift we employed a plan with approximately constant dose gradient along the axis of the instrument. Results: We identified a representative set of parameters which describe performance of a detector array. We determined the minimum gamma-index acceptance criteria allowing the passing rates to reach 100% in the absence of errors, and identified the minimum fully detectable errors for such criteria. For our baseline plans delivered to ArcCHECK, 100% passing rates were obtained for 1.5% dose criterion together with ±3% minimum error detectable at 100% rate, and for 1.5 mm criterion together with the minimum fully detectable error of ±3 mm. We inspected the impact of selected program options on the passing rates. Conclusions: The protocol we developed provides a simple method of commissioning-style analysis of a detector array without a need for analysis of a large number of clinical plans.展开更多
The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-...The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.展开更多
Three-dimensional Information Decoupling System Based on PSD were designed based on LabVIEW, in order to achieve precision, timeliness, reliability require-ments of the PSD used in the ATP system of Satellite Earth qu...Three-dimensional Information Decoupling System Based on PSD were designed based on LabVIEW, in order to achieve precision, timeliness, reliability require-ments of the PSD used in the ATP system of Satellite Earth quantum communication. Firstly, the laser light source was driven by a stepper motor to scan on the PSD photosensitive surface, and the voltage value was collected and calculated to get the spot position. Analyzing the cause of nonlinear, a mathematical model was built between the actual value and the measured value by using binary quadratic polynomial method, PSD nonlinear correction function would be got. Then, the object micro displacement and angle offset were measured by combining optical triangulation method, and the error of the measurement results was corrected. Experimental results showed that, after the correction, the measuring deviation could be significantly reduced, the PSD performance calibration requirements was achieved, the efficiency of the system was developed greatly by using LabVIEW.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12175280 and 12250610193)the National Key R&D Program of China(No.2016YFA0400500)+1 种基金the support of the CAS“Light of West China”Programthe support of the Natural Science Foundation of Gansu(No.23JRRA676)。
文摘A charged particle array named MATE-PA,which serves as an auxiliary detector system for a Multi-purpose Active-target Time projection chamber used in nuclear astrophysical and exotic beam Experiments(MATE),was constructed.The array comprised of 20 single-sided strip-silicon detectors covering approximately 10%of the solid angle.The detectors facilitated the detection of reaction-induced charged particles that penetrate the active volume of the MATE.The performance of MATE-PA has been experimentally studied using an alpha source and a 36-MeV 14 N beam injected into the MATE chamber on the radioactive ion beam line in Lanzhou(RIBLL).The chamber was filled with a gas mixture of 95%4 He and 5%CO_(2) at a pressure of 500 mbar.The results indicated good separation of light-charged particles using the forward double-layer silicon detectors of MATE-PA.The energy resolution of the Si detectors was deduced to be approximately 1%(σ)for an energy loss of approximately 10 MeV caused by theαparticles.The inclusion of MATE-PA improves particle identification and increases the dynamic range of the kinetic energy of charged particles,particularly that of theαparticles,up to approximately 15 MeV.
基金supported by the Young Potential Program of the Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai Rising-Star Program,China(No.22YF1457800)the Chinese Academy of Sciences Youth Education Fund Program(No.E2292502)Gansu Major Scientific and Technological Special Project(No.23ZDGH001)。
文摘Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in the environment as water.This paper presents the design,simulation,and development of a tritium monitoring device utilizing a plastic scintillation fiber(PSF)array.Experimental validation confirmed the device’s detection efficiency and minimum detectable activity.The recorded detection efficiency of the device is 1.6×10^(-3),which exceeds the theoretically simulated value of 4×10^(-4)by four times.Without shielding,the device can achieve a minimum detectable activity of 3165 Bq L^(-1)over a 1600-second measurement duration.According to simulation and experimental results,enhancing detection efficiency is possible by increasing the number and length of PSFs and implementing rigorous shielding measures.Additionally,reducing the diameter of PSFs can also improve detection efficiency.The minimum detectable activity of the device can be further reduced using the aforementioned methods.
基金supported by the National Key R&D Program of China(Nos.2022YFA1603300,2018YFA0404401,2023YFA1606701,2022YFA1602301)National Natural Science Foundation of China(Nos.U1867211,12275026,12222514)the CAS Light of West China Program(No.2020-82).
文摘Total absorption gamma-ray spectroscopy(TAGS)is a powerful tool for measuring complexγ transitions,which has been effectively applied to the study of reactor decay heat.This paper presents the design of a new TAGS detector,the large-scale modular BGO detection array(LAMBDA),tailored for measuringβ-decay intensity distributions of fission products.The modular design allows the LAMBDA detectors to be assembled in various configurations.The final version of LAMBDA consists of 102 identical 60 mm×60 mm×120 mm BGO crystals and exhibits a high full-energy peak efficiency exceeding 80%at 0.5∼8 MeV based on a Monte Carlo simulation.Currently,approximately half of the LAMBDA modules have been manufactured.Tests usingγ-ray sources and nuclear reactions demonstrated favorable energy resolution,energy linearity,and efficiency uniformity across the modules.Forty-eight modules have been integrated into the prototype LAMBDA-I.The capability of LAMBDA-I inβ-delayed-decay experiments was evaluated by commissioning measurements using the ^(152)Eu source.
基金supported by the National Natural Science Foundation of China(61640006)the Natural Science Foundation of Shannxi Province,China(2019JM-386).
文摘For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.
基金supported by the National Natural Science Foundation of China(Nos.U1432247,11575256,and U1632138)the CAS program of Light of West China Program under Grant(No.Y601030XB0)the National key R&D Program of China(No.2018YFA0404403)
文摘A new and innovative detector system based on a silicon strip detector dedicated to the study of the reaction induced by lighter radioactive beams is described herein.The detector system consists of five sets of three types of telescopes,which are successfully used to measure the angular distributions of both elastic scattering and breakup simultaneously, on the Radioactive Ion Beam Line in Lanzhou at Heavy Ion Research Facility in Lanzhou. This silicon detector array is used to measure the elastic scattering angular distributions of ^(11) Be on a ^(208) Pb target at E_(lab) = 140 and 209 MeV. A comparison of the Monte Carlo simulations with the experimental results shows a reasonable consistency.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-YW-N27)the CAS Center for Excellence in Particle Physics(CCEPP)
文摘The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore the origin of high-energy cosmic rays of the universe and to push forward the frontier of new physics.To simplify the WCDA's readout electronics,a prototype of a front-end readout for an application-specific integrated circuit(ASIC) is designed based on the timeover-threshold method to achieve charge-to-time conversion.High-precision time measurement and charge measurement are necessary over a full dynamic range[1-4000photoelectrons(P.E.)].To evaluate the performance of this ASIC,a test system is designed that includes the front-end ASIC test module,digitization module,and test software.The first module needs to be customized for different ASIC versions,whereas the digitization module and test software are tested for general-purpose use.In the digitization module,a field programmable gate array-based time-todigital converter is designed with a bin size of 333 ps,which also integrates an inter-integrated circuit to configure the ASIC test module,and a universal serial bus interface is designed to transfer data to the remote computer.Test results indicate that the time resolution is better than 0.5 ns,and the charge resolution is better than 30%root mean square(RMS) at 1 P.E.and 3%RMS at 4000 P.E.,which are beyond the application requirements.
基金the National Natural Science Foundation of China(Nos.11635015,U1832130,and 11975040)the State Key Laboratory of Software Development Environment(SKLSDE-2020ZX-16)+1 种基金the Continuous Basic Scientific Research Project(No.WDJC-2019-13)the Leading Innovation Project(Nos.LC192209000701 and LC202309000201).
文摘A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam(RIB)experiments and measuring multi-particle correlations.A Monte Carlo simulation was performed to explore the effects of beam drifts in different directions and distances on the angular distribution of the Rutherford scattering,as measured by the detector array.The results indicate that when the beam drift distance is less than 2.0 mm,the symmetry of the detector array can maintain a count error of less than 5%.This confirms the property of the detector array for RIB experiments.Furthermore,the simulation was validated through the elastic scattering angular distributions of 6;7 Li measured by the detector array in 6;7Li t209 Bi experiments at different energies.
文摘A simple and accurate high-performance liquid chromatography(HPLC)coupled with diode array detector(DAD)and evaporative light scattering detector(ELSD)was established for the determination of six bioactive compounds in Zhenqi Fuzheng preparation(ZFP).The monitoring wavelengths were 254,275 and 328 nm.Under the optimum conditions,good separation was achieved,and the assay was fully validated in respect of precision,repeatability and accuracy.The proposed method was successfully applied to quantify the six ingredients in 31 batches of ZFP samples and evaluate the variation by hierarchical cluster analysis(HCA),which demonstrated significant variations on the content of these compounds in the samples from different manufacturers with different preparation procedures.The developed HPLC method can be used as a valid analytical method to evaluate the intrinsic quality of this preparation.
基金Partially supported by the National Natural Science Foundation(No.69872029)and the Research Fund for Doctoral Program of Higher Education(No.19990690808)of China
文摘The MultiCarrier Code Division Multiple Access (MC-CDMA) scheme is promising for relieving capacity limit problems of Direct Sequence (DS-) CDMA systems due to serious InterChip Interference (ICI) and MultiUser Interference (MUI) in high-data-rate wireless communication systems. In this paper, the Uniform Linear Array (ULA) is applied to the base station of macrocellular MC-CDMA systems in a frequency-selective fading channel environment. A joint space-frequency multiuser symbol sequence detector is developed for all active users within one macrocell without space-frequency channel estimation. Simultaneously, Directions-Of-Arrivals (DOAs) of all active users can also be estimated. By dividing the ULA into two identical overlapping subarrays, a specific auxiliary matrix is constructed, which includes both symbol sequence and DOA information of all active users. Then, based on the subspace method, performing the eigen decomposition on such auxiliary matrix, the closed-form solution of symbol sequences and DOAs for all active users can be obtained. In comparison with schemes based on channel estimation, our algorithm need not explicitly estimate the space-frequency channel for each active user,so it has lower computation complexity. Extensive computer simulations demonstrate the overall performance of this novel scheme.
基金supported by Project of the National Natural Science Foundation of China (No.62073256, 61773305)the Key Science and Technology Program of Shaanxi Province (No.2020GY-125)Xi’an Science and Technology Innovation talent service enterprise project (No.2020KJRC0041)。
文摘To objectively obtain the three-dimensional coordinates of the projectile fuze proximity explosion when projectile intersects the head of missile target, we propose a dynamic seven photoelectric detection screen test method, which is made up of six plane detection screens and a flash photoelectric dynamic detection screen. The three-dimensional coordinates calculation model of the projectile proximity explosion position based on seven plane detection screens with dynamic characteristics is established.According to the relation of the dynamic seven photoelectric detection screen planes and the time values,the analytical function of the projectile proximity explosion position parameters under non-linear motion is derived. The projectile signal filtering method based on discrete wavelet transform is explored in this work. Additionally, the projectile signal recognition algorithm using an improved particle swarm is proposed. Based on the characteristics of the time duration and the signal peak error for the projectile passing through the detection screen, the signals attribution of the same projectile passing through six detection screens are analyzed for obtaining precise time values of the same projectile passing through the detection screens. On the basis of the projectile fuze proximity explosion test, the linear motion model and the proposed non-linear motion model are used to calculate and compare the same group of projectiles proximity explosion position parameters. The comparison of test results verifies that the proposed test method and calculation model in this work accurately obtain the actual projectile proximity explosion position parameters.
文摘The spatial resolution of a commercial two-dimensional(2D)ionization chamber(IC)array is limited by the size of the individual detector and the center-to-center distance between sensors.For dose distributions with areas of steep dose gradients,inter-detector dose values are derived by the interpolation of nearby detector readings in the conventional mathematical interpolation of 2D IC array measurements.This may introduce significant errors,particularly in proton spot scanning radiotherapy.In this study,by combining logfile-based reconstructed dose values and detector measurements with the Laplacian pyramid image blending method,a novel method is proposed to obtain a reformatted dose distribution that provides an improved estimation of the delivered dose distribution with high spatial resolution.Meanwhile,the similarity between the measured original data and the downsampled logfilebased reconstructed dose is regarded as the confidence of the reformatted dose distribution.Furthermore,we quantify the performance benefits of this new approach by directly comparing the reformatted dose distributions with 2D IC array detector mathematically interpolated measurements and original low-resolution measurements.The result shows that this new method is better than the mathematical interpolation and achieves gamma pass rates similar to those of the original low-resolution measurements.The reformatted dose distributions generally yield a confidence exceeding 95%.
文摘Purpose: To study the dosimetric characteristics of amorphous silicon Electronic Portal Imaging Device EPID and 2D array detector for dose verification of radiotherapy treatment plans, and the quality assurance QA testing of IMRT was investigated. Materials and methods: All measurements were done with Varian IX linear accelerator, aSi-1000 EPID and 2D array detector. The dose linearity, reproducibility, output factors, dose rate, SDD and response with slap phantom thickness have been measured and compared against those measured by ion chamber. Results: The characteristics of EPID and 2D array: the response of EPID agreed with 2D array and ion chamber 0.6cc. EPID and 2D array showed short-term output reproducibility with SD = 0.1%. The dose rates of 2D array SD = ±0.7%, EPID = ±0.4% compared with a 0.6 cc SD = ±0.5%. Output factor measurements for the central chamber of the EPID and 2D array showed no considerable deviation from ion chamber measurements. Measurement of beam profiles with the EPID and 2D array matched very well with the ion chamber measurements in the water phantom. The EPID is more sensitive to lower energy photons by increasing solid water phantom thickness. The mean and standard deviation passing rates (γ%≤1) for film, 2D array and EPID for 30 IMRT fields of five patients were 95.93 ± 0.96%, 99.05 ± 0.24%, and 99.37 ± 0.12%, respectively. Conclusion: The study shows that EPID and 2D array are a reliable and accurate dosimeter and a useful tool for quality assurance. We found that the EPID was more accurate compared with both 2D array and ion chamber. The gamma criterion of 3%/3 mm is the most suitable criteria for IMRT plans of QA.
基金supported by the Natural Science Foundation of Shandong Province (No. ZR2022QA039)the Program of Qilu Young Scholars of Shandong University
文摘With the development of silicon photomultiplier(SiPM)technology,front-end electronics for SiPM signal processing have been highly sought after in various fields.A compact 64-channel front-end electronics(FEE)system achieved by fieldprogrammable gate array-based charge-to-digital converter(FPGA-QDC)technology was built and developed.The FEE consists of an analog board and FPGA board.The analog board incorporates commercial amplifiers,resistors,and capacitors.The FPGA board is composed of a low-cost FPGA.The electronics performance of the FEE was evaluated in terms of noise,linearity,and uniformity.A positron emission tomography(PET)detector with three different readout configurations was designed to validate the readout capability of the FEE for SiPM-based detectors.The PET detector was made of a 15×15 lutetium–yttrium oxyorthosilicate(LYSO)crystal array directly coupled with a SiPM array detector.The experimental results show that FEE can process dual-polarity charge signals from the SiPM detectors.In addition,it shows a good energy resolution for 511-keV gamma photons under the dual-end readout for the LYSO crystal array irradiated by a Na-22 source.Overall,the FEE based on FPGA-QDC shows promise for application in SiPM-based radiation detectors.
基金supported by the Major program of Natural Science Foundation of Shandong Province(No.ZR2020ZD30)the National Natural Science Foundation of China(Nos.11775133,U2167202,U1432119).
文摘A particle detector array designed for light-charged particles, known as the CsI-bowl, was built for exit channel selection for in-beam γ-ray spectroscopy experiments. This device is composed of 64 CsI(Tl) detectors, organized in a structure reminiscent of a tea-bowl. High quantum efficiency photodiodes, characterized by their minimal mass, were employed to collect scintillation light. Its design, construction, particle identification resolution, and its effectiveness in relation to exit channel selection are described in this paper. In source tests, the optimal figure of merit for the identification of α-particles and γ-rays using the charge comparison method was found to be 3.3 and 12.1 for CsI detectors coupled to photodiodes and avalanche photodiodes, respectively. The CsI-bowl demonstrated effectiveness in identifying particles, specifically the emission of protons and α-particles in the58Ni(19F, xpyn) fusion–evaporation reaction, thereby enabling the selection of the desired exit channels.
基金supported by the National Basic Research Program of China(Grant No.2010CB923202)
文摘The performance of superconducting nanowire single-photon detector (SNSPD) involving niobium nitride with the fan coupling antenna array is analyzed. The SNSPD has a high detection efficiency and counting rate. Hydrogen silsesquioxane and niobium nitride are filled in the gold grating deposited on the substrate in which the fan coupling antenna arrays are embedded. By changing the position of the fan coupling antenna array, the maximum area of optical intensity is obtained and the photon collection efficiency is increased by 26.5 times. The detection efficiency of SNSPD is improved without changing the detection speed. These parameters are important for designing a practical single-photon detector,
基金supported by the National Science Funds for Creative Research Groups of China under Grant No.61421002National High Technology Research and Development Program under Grant No.2015AA8123014
文摘Room-temperature terahertz (THz) detectors indicate a great potential in the imaging application because of their real-time, compact bulk, and wide spectral band responding characteristics. THz detectors with different dimensions based on a micro-bridge structure have been designed and fabricated to get optimized micro-bolometer parameters from the test results of membrane deformation. A nanostructured titanium (Ti) thin film absorber is integrated in the micro-bridge structure of the VOx micro-bolometer by a combined process of magnetron sputtering and reactive ion etching (RIE), and its improvement of THz absorption is verified by an optical characteristics mesurement. Continuous-wave THz detection and imaging are demonstrated by using a 2.52 THz far infrared CO2 laser and a 320x240 vanadium oxide micro-bolometer focal plane array with an optimized cell structure. With this detecting system, THz imaging of metal concealed in a wiping cloth and an envelope is demonstrated, respectively.
基金supported by the National Key Research and Development Program of China,China(2017YFB0701900)High-Level Special Funds(G02256401 and G02256301)+1 种基金supported by the fund of the Guangdong Provincial Key Laboratory(2018B030322001)the Guangdong-Hong Kong-Macao Joint Laboratory(2019B121205001)。
文摘High-throughput powder X-ray diffraction(XRD)with white X-ray beam and an energy-dispersive detector array is demonstrated in this work on a CeO;powder sample on a bending magnet synchrotron beamline at the Shanghai Synchrotron Radiation Facility(SSRF),using a simulated energy-dispersive array detector consisting of a spatially scanning silicon-drift detector(SDD).Careful analysis and corrections are applied to account for various experimental hardware-related and diffraction angle-related factors.The resulting diffraction patterns show that the relative strength between different diffraction peaks from energy-dispersive XRD(EDXRD)spectra is consistent with that from angle-resolved XRD(ARXRD),which is necessary for analyzing crystal structures for unknown samples.The X-ray fluorescence(XRF)signal is collected simultaneously.XRF counts from all pixels are integrated directly by energy,while the diffraction spectra are integrated by d-spacing,resulting in a much improved peak strength and signal-to-noise(S/N)ratio for the array detector.In comparison with ARXRD,the diffraction signal generated by a white X-ray beam over monochromic light under the experimental conditions is about 104 times higher.The full width at half maximum(FWHM)of the peaks in q-space is found to be dependent on the energy resolution of the detector,the angle span of the detector,and the diffraction angle.It is possible for EDXRD to achieve the same or even smaller FWHM as ARXRD under the energy resolution of the current detector if the experimental parameters are properly chosen.
文摘Purpose: This study provides a simple protocol for validation of the gamma passing rates and to identify the optimum values of % dose and mm criteria for dose distributions measured with a detector array. Methods: We chose ArcCHECK detector array to illustrate the concepts. We used plans with uniform or quasi-uniform dose distributions along the detector array for testing in the presence of dose errors. For testing sensitivity to spatial shift we employed a plan with approximately constant dose gradient along the axis of the instrument. Results: We identified a representative set of parameters which describe performance of a detector array. We determined the minimum gamma-index acceptance criteria allowing the passing rates to reach 100% in the absence of errors, and identified the minimum fully detectable errors for such criteria. For our baseline plans delivered to ArcCHECK, 100% passing rates were obtained for 1.5% dose criterion together with ±3% minimum error detectable at 100% rate, and for 1.5 mm criterion together with the minimum fully detectable error of ±3 mm. We inspected the impact of selected program options on the passing rates. Conclusions: The protocol we developed provides a simple method of commissioning-style analysis of a detector array without a need for analysis of a large number of clinical plans.
基金Supported by the National Basic Research Program (973) of China (No. 2009CB72400)
文摘The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper. Three apertures are distributed along the cross-track direction, and three virtual phase centers will be obtained through one-input and three-output. These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution. Because the cross-track array is short, the cross-track resolution is low. When the system works in side-looking mode, the cross-track resolution and height resolution will be coupling, and the low cross-track resolution will partly be transformed into the height uncertainty. The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array. In order to suppress the high cross-track sidelobes, a weighting preprocessing method is proposed. The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method. And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.
文摘Three-dimensional Information Decoupling System Based on PSD were designed based on LabVIEW, in order to achieve precision, timeliness, reliability require-ments of the PSD used in the ATP system of Satellite Earth quantum communication. Firstly, the laser light source was driven by a stepper motor to scan on the PSD photosensitive surface, and the voltage value was collected and calculated to get the spot position. Analyzing the cause of nonlinear, a mathematical model was built between the actual value and the measured value by using binary quadratic polynomial method, PSD nonlinear correction function would be got. Then, the object micro displacement and angle offset were measured by combining optical triangulation method, and the error of the measurement results was corrected. Experimental results showed that, after the correction, the measuring deviation could be significantly reduced, the PSD performance calibration requirements was achieved, the efficiency of the system was developed greatly by using LabVIEW.