A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelec...A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelectron spectrometry(XPS), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD) and transmission electron microscopy(TEM). Hardness and adhesion were tested by nanoindentation and scratch tester, respectively. The friction properties were investigated by a reciprocating UMT-3MT ball-on-disk tribometer in air and seawater. The results showed that the multilayer coating consisted of three different layers, with Cr,Cr2N and CrN phases, respectively. Compared with CrN single layer coating, the adhesion of the multilayer coating was improved significantly, the hardness of the multilayer coating was(21±2) GPa. The corrosion resistance of the multilayer coating was also improved in artificial seawater. The friction coefficient of multilayer coating was lower than that of CrN single layer coating both in air and seawater.展开更多
Cr/CrN multilayer coatings with bilayer periods in the range from 1351 to 260 nm were prepared on 304 stainless steel substrates by arc ion plating to study the microstructure and properties of multilayer coatings and...Cr/CrN multilayer coatings with bilayer periods in the range from 1351 to 260 nm were prepared on 304 stainless steel substrates by arc ion plating to study the microstructure and properties of multilayer coatings and stimulate their application.SEM results confirm the clear periodicity of the Cr/CrN multilayer coatings and the clear interface between individual layers.XRD patterns reveal that these multilayer coatings contain Cr,CrN and Cr_2N phases.Because Cr layer is softer than its nitride layer,the hardness decreases with the shortening of the bilayer period(or increasing volume fraction of Cr layer).The Cr/CrN multilayer coating with 862 nm period possesses the highest indentation toughness due to a proper individual Cr and nitride layer thickness.However,for the Cr/CrN multilayer with the bilayer period of 1351 nm,it possesses the lowest toughness due to more nitride phase.The indentation toughness of Cr/CrN multilayer coatings is related with their bilayer period.A coating with a proper individual Cr and nitride layer thickness possesses the highest indentation toughness.展开更多
Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN...Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN/Cu nanocomposite coatings with various N_(2) partial pressures were deposited on 304 stainless steels(SS)using an arc ion plating(AIP)system,named TiN/Cu-x(x=0.5,1.0,1.5 Pa).The results of X-ray diffraction analysis,energy-dispersive X-ray spectroscopy,and scanning electron microscopy showed that the N_(2) partial pressures determined the Cu contents,surface defects,and crystallite sizes of TiN/Cu nanocomposite coatings,which further influenced the comprehensive abilities.And the hardness and wear resistances of TiN/Cu coatings were enhanced with increase of the crystallite sizes.Under the co-actions of surface defects,crystallite sizes,and Cu content,TiN/Cu-1.0 and TiN/Cu-1.5 coatings possessed excellent corrosion resistance.Besides,the biological tests proved that all the TiN/Cu coatings showed no cytotoxicity with strong antibacterial ability.Among them,TiN/Cu-1.5 coating significantly promoted the cell proliferation,which is expected to be a novel antibacterial,corrosion-resistant,and wear-resistant coating on the surfaces of medical implants.展开更多
TiN/CrN multilayered hard coatings with TiCrN interlayer were deposited onhigh speed steel substrates by using a filtered cathodic vacuum arc technique. The structure andcomposition of the coatings were characterized ...TiN/CrN multilayered hard coatings with TiCrN interlayer were deposited onhigh speed steel substrates by using a filtered cathodic vacuum arc technique. The structure andcomposition of the coatings were characterized by scanning electron microscopy (SEM) and Augerelectron spectroscopy (AES). A high adhesion of up to 80 N was demonstrated by scratching tests forthe multi-layered coatings. Nanoindentation tests were performed to determine the hardness andelastic modulus of the coatings as a function of the multiplayer modulation period. It was observedthat the hardness of the multilayered coatings is higher than those of either TiN or CrN singlecoatings, and it increases with decreasing modulation periods, which is consistent with predictionsfrom the Hall-Petch type strengthening mechanism, though at small modulation periods, deviation fromthe Hall-Petch relation has been observed for the multilayered coatings. The life-span of drillscoated with TiN/CrN multilayered is triple as long as that coated with TiN layer.展开更多
Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetron sputtering technique (IBAMS) was studied using indentation and dynamic cycle ...Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetron sputtering technique (IBAMS) was studied using indentation and dynamic cycle impact. It is found that, for the coatings on silicon substrate, the cracks form in the indentation corners and then propagate outward under Vickers indentation. The coating prepared using ion assisted energy of 800 eV shows the highest fracture resistance due to its compact structure. Under Rockwell indentation, only finer radial cracks are found in the CrN coating on AISI 52100 steel without ion assisting while in the condition of ion assisting energy of 800 eV, radial, lateral cracks and spalling appear in the vicinity of indentation. The fracture of CrN coatings under dynamic cycle impact is similar to fatigue. The impact fracture resistance of CrN coatings increases with the increase of ion assisting energy.展开更多
The coating substrate bonding strengths under different intermixing processes were evaluated by scratch and spherical rolling contact fatigue methods. The results show that for low bombarding energy of N ions dynamic ...The coating substrate bonding strengths under different intermixing processes were evaluated by scratch and spherical rolling contact fatigue methods. The results show that for low bombarding energy of N ions dynamic recoiling at 10 keV and 20 keV, the coating layers are of excellent bonding strengths. The bonding strength of CrN coating with 40 keV static recoiling is higher than that of low energy(20 keV). On the other hand, the bonding strength of coating with 40 keV dynamic recoiling is much lower than that of static recoiling at the same energy and even less than that of dynamic recoiling intermixings at 10 keV and 20 keV energy. The results of scratch and spherical rolling contact fatigue methods exhibit the same trend for each group of recoiling methods, yet the results of the scratch and fatigue tests for two groups do not agree with each other.展开更多
The multilayer gradient CrN/ZrN coatings were synthesized by a dual cathode DC magnetron sputtering.The influence of different species of reaction gases and partial pressures on structure and mechanical properties was...The multilayer gradient CrN/ZrN coatings were synthesized by a dual cathode DC magnetron sputtering.The influence of different species of reaction gases and partial pressures on structure and mechanical properties was investigated using XRD, AES, XPS, and nanoindentation. The results show that N2-NH3 mixture process gas is of benefit to the synthesis of superhard multilayered gradient CrN/ZrN coatings. The presence of the preferred orientations of CrN(111), (200) and ZrN (111), (220) in the structure is a main reason for superhardness of multilayered gradient coatings.展开更多
In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the mic...In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the microstructure and tribological properties of TiN coatings were investigated.The results show that the coating is relative thin when the nitrogen flux is small and mainly consists of Ti2N,α-Ti,Ti O and TiN phases,and the metastable phase of Ti2N is developed due to the rapid solidification of ESD.While in excessive nitrogen flux condition,many micro-cracks and holes might be generated in the coating.In moderate nitrogen flux,the coating is mainly composed of TiN phase,and is dense and uniform(50-55 μm).The average hardness is HV0.2 1165.2,which is 3.4 times that of the TC11 substrate.The TiN coatings prepared in moderate nitrogen flux perform the best wear resistance.The wear loss of the coating is 0.4 mg,which is 2/9 that of the TC11 substrate.The main wear mechanisms of the coatings are micro-cutting wear accompanied by multi-plastic deformation wear.展开更多
Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear ...Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear behavior was investigated by test of ball on disc sliding. The composition and microstructure of the coating were also analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the morphology of TiN-CrN film was surveyed through scanning electronic microscopy (SEM) and atom force microscopy (AFM).The adhesion strength between film and matrix was evaluated by ways of stick-peeling test. The surface micro-hardness of the coating is above HK0.011 433, and the specific wear ratio of specimens coated with TiN-CrN films tested decreases greatly compared to that of the bare metal.展开更多
TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. Th...TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. The results show that the output plasmas of titanium target without filter and aluminium target with filter reach the substrate with the same order of magnitude. Meanwhile, the number of macropartieles in TiN/TiAlN multilayer coatings deposited with separate targets is only 1/10-1/3 of that deposited with alloy target reported in literature. Al atom addition may lead to the decrease of peak at (200) lattice plane and strengthening of peak at (111) and (220) lattice planes. The measured hardness of TiN/TiAlN multilayer coatings accords with the mixture principle and the maximum hardness is HV2495. The adhesion strength reaches 75 N.展开更多
Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-s...Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.展开更多
In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology ...In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology and composition wereexamined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicatethat TiN nanoparticles were doped successfully in the Ni-P matrix after a series of complex pretreatments including activation, zincimmersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion betweenmagnesium alloy and composite coating. The microhardness of the Ni-P coating increases dramatically by adding TiN nanoparticlesand subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni-P-TiN compositecoating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni-P coating in short immersion time.However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.展开更多
With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of mag...With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of magnesium alloy to static components. In this study, a 2 μm thick coating with 12 sub-layers of CrN and TiN is deposited alternately on the surface of magnesium alloy AZ91 by a novel method of arc-glow plasma depositing to improve its wear resistance. The composition and microstructure of the coating layer are analyzed by means of SEM, XRD and GDS. The friction coefficient is measured by ball on disc rubbing test, and the wear rates are also calculated. The results indicate that the friction coefficient is increased, but the wear rate is dropped sharply as compared with bare metal. The surface hardness is about HK0.01 1400.展开更多
TiN coatings were deposited on polished substrates of W18Cr4V high speed steel by means of vacuum arc ion plating. The effect of cerium on adhesion between TiN coating and substrate was studied. The microstructures an...TiN coatings were deposited on polished substrates of W18Cr4V high speed steel by means of vacuum arc ion plating. The effect of cerium on adhesion between TiN coating and substrate was studied. The microstructures and composition of TiN coatings were also investigated by means of scanning electron microscope (SEM), Auger electron spectroscopy (AES), and X ray diffraction (XRD) technique. It was found that cerium is an effective modifying agent and the addition of suitable amount of cerium to TiN coatings can produce relatively excellent properties such as micro hardness, wear resistance, oxidation resistance and porosity. The experimental results show that the added cerium in TiN coatings makes a contribution to form the preferred direction along with a (111) or (222) close packed face, which may be one of the reasons that improves some properties mentioned above.展开更多
Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,X...Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,XPS and SEM. Solid solution hardening results in a hardness increase from 24 GPa for TiN to 31.2 GPa for TiAlN. The higher hardness values of 36.7 GPa for TiSiN and 42.4 GPa for TiAlSiN are obtained by the incorporation of Si into TiN (TiAlN) coatings due to the formation of special three-dimensional net structure consisting of nanocrystalline (nc) TiN (TiAlN) encapsulated in an amorphous (a) Si3N4 matrix phase. Furthermore,the nc-TiAlN/a-Si3N4 coating shows the best machining performance.展开更多
A nanocrystalline TiN graded coating was prepared on Ti6Al4V alloy by DC reactive magnetron sputtering method. The microstructure and mechanic properties of the coating were investigated. The electrochemical corrosion...A nanocrystalline TiN graded coating was prepared on Ti6Al4V alloy by DC reactive magnetron sputtering method. The microstructure and mechanic properties of the coating were investigated. The electrochemical corrosion and tribocorrosion of the coated specimens in physiological environment were compared with those of Ti6Al4V substrate. The results show that the gradient distribution of nanocrystalline TiN is favorable for releasing the inner stress in the coating, which increases adhesion strength to 90 N. The compact structure and refined-grains of the coating result in the surface nanohardness of 28.5 GPa. The corrosion protection efficiency of the nanocrystalline TiN coating reaches 96.6%. The tribocorrosion resistance of the coating increases by 100 times in comparison with that of Ti6Al4V substrate. The high chemical stability and H3/E2 ratio (where H is hardness, and E is elastic modulus) of the nanocrystalline TiN coating are responsible for good corrosion and wear resistances.展开更多
基金Project(51475449)supported by the National Natural Science Foundation of China
文摘A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelectron spectrometry(XPS), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD) and transmission electron microscopy(TEM). Hardness and adhesion were tested by nanoindentation and scratch tester, respectively. The friction properties were investigated by a reciprocating UMT-3MT ball-on-disk tribometer in air and seawater. The results showed that the multilayer coating consisted of three different layers, with Cr,Cr2N and CrN phases, respectively. Compared with CrN single layer coating, the adhesion of the multilayer coating was improved significantly, the hardness of the multilayer coating was(21±2) GPa. The corrosion resistance of the multilayer coating was also improved in artificial seawater. The friction coefficient of multilayer coating was lower than that of CrN single layer coating both in air and seawater.
基金Project(51171118)supported by the National Natural Science Foundation of ChinaProject(2012-4)supported by the Liaoning Provincial Key Laboratory of Advanced Materials,Shenyang University,China
文摘Cr/CrN multilayer coatings with bilayer periods in the range from 1351 to 260 nm were prepared on 304 stainless steel substrates by arc ion plating to study the microstructure and properties of multilayer coatings and stimulate their application.SEM results confirm the clear periodicity of the Cr/CrN multilayer coatings and the clear interface between individual layers.XRD patterns reveal that these multilayer coatings contain Cr,CrN and Cr_2N phases.Because Cr layer is softer than its nitride layer,the hardness decreases with the shortening of the bilayer period(or increasing volume fraction of Cr layer).The Cr/CrN multilayer coating with 862 nm period possesses the highest indentation toughness due to a proper individual Cr and nitride layer thickness.However,for the Cr/CrN multilayer with the bilayer period of 1351 nm,it possesses the lowest toughness due to more nitride phase.The indentation toughness of Cr/CrN multilayer coatings is related with their bilayer period.A coating with a proper individual Cr and nitride layer thickness possesses the highest indentation toughness.
基金financially supported by National Key Research and Development Program of China (Nos. 2018YFC1106601 and 2016YFC1100601)Liaoning Revitalization Talents Program (No. XLYC1807069)+1 种基金National Natural Science Foundation of China (Nos. 51631009 and 31870954)Key Projects for Foreign Cooperation of Bureau of International Cooperation Chinese Academy of Sciences (No. 174321KYSB20180006)
文摘Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN/Cu nanocomposite coatings with various N_(2) partial pressures were deposited on 304 stainless steels(SS)using an arc ion plating(AIP)system,named TiN/Cu-x(x=0.5,1.0,1.5 Pa).The results of X-ray diffraction analysis,energy-dispersive X-ray spectroscopy,and scanning electron microscopy showed that the N_(2) partial pressures determined the Cu contents,surface defects,and crystallite sizes of TiN/Cu nanocomposite coatings,which further influenced the comprehensive abilities.And the hardness and wear resistances of TiN/Cu coatings were enhanced with increase of the crystallite sizes.Under the co-actions of surface defects,crystallite sizes,and Cu content,TiN/Cu-1.0 and TiN/Cu-1.5 coatings possessed excellent corrosion resistance.Besides,the biological tests proved that all the TiN/Cu coatings showed no cytotoxicity with strong antibacterial ability.Among them,TiN/Cu-1.5 coating significantly promoted the cell proliferation,which is expected to be a novel antibacterial,corrosion-resistant,and wear-resistant coating on the surfaces of medical implants.
基金This work was financially supported by the Science Foundation of Lanzhou Institute Chemistry and Physics, Chinese Academy of Science (No.01-03).
文摘TiN/CrN multilayered hard coatings with TiCrN interlayer were deposited onhigh speed steel substrates by using a filtered cathodic vacuum arc technique. The structure andcomposition of the coatings were characterized by scanning electron microscopy (SEM) and Augerelectron spectroscopy (AES). A high adhesion of up to 80 N was demonstrated by scratching tests forthe multi-layered coatings. Nanoindentation tests were performed to determine the hardness andelastic modulus of the coatings as a function of the multiplayer modulation period. It was observedthat the hardness of the multilayered coatings is higher than those of either TiN or CrN singlecoatings, and it increases with decreasing modulation periods, which is consistent with predictionsfrom the Hall-Petch type strengthening mechanism, though at small modulation periods, deviation fromthe Hall-Petch relation has been observed for the multilayered coatings. The life-span of drillscoated with TiN/CrN multilayered is triple as long as that coated with TiN layer.
基金Funded by the National Natural Science Foundation of China(No. 50771070)Shanxi Province Science and Technology Key Projects (No. 20100321078-02)
文摘Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetron sputtering technique (IBAMS) was studied using indentation and dynamic cycle impact. It is found that, for the coatings on silicon substrate, the cracks form in the indentation corners and then propagate outward under Vickers indentation. The coating prepared using ion assisted energy of 800 eV shows the highest fracture resistance due to its compact structure. Under Rockwell indentation, only finer radial cracks are found in the CrN coating on AISI 52100 steel without ion assisting while in the condition of ion assisting energy of 800 eV, radial, lateral cracks and spalling appear in the vicinity of indentation. The fracture of CrN coatings under dynamic cycle impact is similar to fatigue. The impact fracture resistance of CrN coatings increases with the increase of ion assisting energy.
文摘The coating substrate bonding strengths under different intermixing processes were evaluated by scratch and spherical rolling contact fatigue methods. The results show that for low bombarding energy of N ions dynamic recoiling at 10 keV and 20 keV, the coating layers are of excellent bonding strengths. The bonding strength of CrN coating with 40 keV static recoiling is higher than that of low energy(20 keV). On the other hand, the bonding strength of coating with 40 keV dynamic recoiling is much lower than that of static recoiling at the same energy and even less than that of dynamic recoiling intermixings at 10 keV and 20 keV energy. The results of scratch and spherical rolling contact fatigue methods exhibit the same trend for each group of recoiling methods, yet the results of the scratch and fatigue tests for two groups do not agree with each other.
基金Project(043801011) supported by Applied Basic Key Project of Tianjin Project(50472026) supported by the National Natural Science Foundation of China Project(GJDF01) also supported partly by Joint Project of Tianjin Municipal University and Nankai University and Tianjin University, State Education Ministry
文摘The multilayer gradient CrN/ZrN coatings were synthesized by a dual cathode DC magnetron sputtering.The influence of different species of reaction gases and partial pressures on structure and mechanical properties was investigated using XRD, AES, XPS, and nanoindentation. The results show that N2-NH3 mixture process gas is of benefit to the synthesis of superhard multilayered gradient CrN/ZrN coatings. The presence of the preferred orientations of CrN(111), (200) and ZrN (111), (220) in the structure is a main reason for superhardness of multilayered gradient coatings.
文摘In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the microstructure and tribological properties of TiN coatings were investigated.The results show that the coating is relative thin when the nitrogen flux is small and mainly consists of Ti2N,α-Ti,Ti O and TiN phases,and the metastable phase of Ti2N is developed due to the rapid solidification of ESD.While in excessive nitrogen flux condition,many micro-cracks and holes might be generated in the coating.In moderate nitrogen flux,the coating is mainly composed of TiN phase,and is dense and uniform(50-55 μm).The average hardness is HV0.2 1165.2,which is 3.4 times that of the TC11 substrate.The TiN coatings prepared in moderate nitrogen flux perform the best wear resistance.The wear loss of the coating is 0.4 mg,which is 2/9 that of the TC11 substrate.The main wear mechanisms of the coatings are micro-cutting wear accompanied by multi-plastic deformation wear.
基金Project(20041065) supported by the Natural Science Foundation of Shanxi Province, China
文摘Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear behavior was investigated by test of ball on disc sliding. The composition and microstructure of the coating were also analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the morphology of TiN-CrN film was surveyed through scanning electronic microscopy (SEM) and atom force microscopy (AFM).The adhesion strength between film and matrix was evaluated by ways of stick-peeling test. The surface micro-hardness of the coating is above HK0.011 433, and the specific wear ratio of specimens coated with TiN-CrN films tested decreases greatly compared to that of the bare metal.
基金Projects (50773015, 10775036) supported by the National Natural Science Foundation of China
文摘TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. The results show that the output plasmas of titanium target without filter and aluminium target with filter reach the substrate with the same order of magnitude. Meanwhile, the number of macropartieles in TiN/TiAlN multilayer coatings deposited with separate targets is only 1/10-1/3 of that deposited with alloy target reported in literature. Al atom addition may lead to the decrease of peak at (200) lattice plane and strengthening of peak at (111) and (220) lattice planes. The measured hardness of TiN/TiAlN multilayer coatings accords with the mixture principle and the maximum hardness is HV2495. The adhesion strength reaches 75 N.
基金Project(2011B050400007)supported by the International Cooperation Program of Guangdong Province,China
文摘Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.
基金Projects(51171172,51131005)supported by the National Natural Science Foundation of ChinaProject(R16E010001)supported by Zhejiang Provincial Natural Science Foundation of China+1 种基金Project(2015QNA3011)supported by Fundamental Research Funds for the Central Universities,ChinaProject(14DZ2261000)supported by Science and Technology Commission of Shanghai Municipality,China
文摘In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology and composition wereexamined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicatethat TiN nanoparticles were doped successfully in the Ni-P matrix after a series of complex pretreatments including activation, zincimmersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion betweenmagnesium alloy and composite coating. The microhardness of the Ni-P coating increases dramatically by adding TiN nanoparticlesand subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni-P-TiN compositecoating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni-P coating in short immersion time.However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.
基金Science foundation of Shanxi province, China (20041065)
文摘With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of magnesium alloy to static components. In this study, a 2 μm thick coating with 12 sub-layers of CrN and TiN is deposited alternately on the surface of magnesium alloy AZ91 by a novel method of arc-glow plasma depositing to improve its wear resistance. The composition and microstructure of the coating layer are analyzed by means of SEM, XRD and GDS. The friction coefficient is measured by ball on disc rubbing test, and the wear rates are also calculated. The results indicate that the friction coefficient is increased, but the wear rate is dropped sharply as compared with bare metal. The surface hardness is about HK0.01 1400.
文摘TiN coatings were deposited on polished substrates of W18Cr4V high speed steel by means of vacuum arc ion plating. The effect of cerium on adhesion between TiN coating and substrate was studied. The microstructures and composition of TiN coatings were also investigated by means of scanning electron microscope (SEM), Auger electron spectroscopy (AES), and X ray diffraction (XRD) technique. It was found that cerium is an effective modifying agent and the addition of suitable amount of cerium to TiN coatings can produce relatively excellent properties such as micro hardness, wear resistance, oxidation resistance and porosity. The experimental results show that the added cerium in TiN coatings makes a contribution to form the preferred direction along with a (111) or (222) close packed face, which may be one of the reasons that improves some properties mentioned above.
基金Project(50721003) supported by Creative Research Group of National Natural Science Foundation of ChinaProject(2009ZX04012-021) supported by the National Major Special Science and Technology Program of China
文摘Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,XPS and SEM. Solid solution hardening results in a hardness increase from 24 GPa for TiN to 31.2 GPa for TiAlN. The higher hardness values of 36.7 GPa for TiSiN and 42.4 GPa for TiAlSiN are obtained by the incorporation of Si into TiN (TiAlN) coatings due to the formation of special three-dimensional net structure consisting of nanocrystalline (nc) TiN (TiAlN) encapsulated in an amorphous (a) Si3N4 matrix phase. Furthermore,the nc-TiAlN/a-Si3N4 coating shows the best machining performance.
基金Project(51525101) supported by the National Natural Science Foundation of China
文摘A nanocrystalline TiN graded coating was prepared on Ti6Al4V alloy by DC reactive magnetron sputtering method. The microstructure and mechanic properties of the coating were investigated. The electrochemical corrosion and tribocorrosion of the coated specimens in physiological environment were compared with those of Ti6Al4V substrate. The results show that the gradient distribution of nanocrystalline TiN is favorable for releasing the inner stress in the coating, which increases adhesion strength to 90 N. The compact structure and refined-grains of the coating result in the surface nanohardness of 28.5 GPa. The corrosion protection efficiency of the nanocrystalline TiN coating reaches 96.6%. The tribocorrosion resistance of the coating increases by 100 times in comparison with that of Ti6Al4V substrate. The high chemical stability and H3/E2 ratio (where H is hardness, and E is elastic modulus) of the nanocrystalline TiN coating are responsible for good corrosion and wear resistances.