A novel titanium dioxide (TiO2) film comprising both nanotubes and nanopaticles was fabricated by an anodization process of the modified titanium. The local electric field at the anodized surface was simulated and i...A novel titanium dioxide (TiO2) film comprising both nanotubes and nanopaticles was fabricated by an anodization process of the modified titanium. The local electric field at the anodized surface was simulated and its influence on the morphology of the TiO2 film was discussed. The results show that the electric field strength is enhanced by the covering. The growth rate of TiO2 increases with the assist of the local electric field. However, TiO2 dissolution is hindered since the local electric field prevents [TiF6]6- from diffusing. It means that the balance condition for the formation of nanotubes is broken, and TiO2 nanoparticles are formed. Moreover, the crystal structure of the TiO2 film was confirmed using X-ray diffraction and Raman analysis. The anatase is a main phase for the proposed film.展开更多
TiO2 thin films were prepared by DC magnetron sputtering with the oxygen flow rate higher than the threshold. The film deposited for 5 h was of anatase phase with a preferred orientation along the <220> directio...TiO2 thin films were prepared by DC magnetron sputtering with the oxygen flow rate higher than the threshold. The film deposited for 5 h was of anatase phase with a preferred orientation along the <220> direction, but the films deposited for 2 and 3 h were amorphous. The transmittance and photocatalytic activity of the TiO2 films increased constantly with increasing film thickness. When the annealing temperature was lower than 700℃, only anatase grew in the TiO2 film. TiO2 phase changed from anatase to rutile when the annealing temperature was above 800℃. The photocatalytic activity decreased with increasing annealing temperature.展开更多
Mo-C codoped TiO2 films were prepared by RF magnetron cosputtering. Ultraviolet-visible spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray Analysis and X-Ray Diffraction w...Mo-C codoped TiO2 films were prepared by RF magnetron cosputtering. Ultraviolet-visible spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray Analysis and X-Ray Diffraction were used to study the influences of codoping on energy gap, surface morphology, valence states of elements, ions content and crystal structure, respectively. The concentration of photogenerated carriers was measured by studying photocurrent density, while catalytic property was evaluated by observing degradation rate of methylene blue under visible light. A Mo-doped TiO2 film, whose content of Mo had been optimized in advance, was prepared and later used for subsequent comparisons with codoped samples. The result indicates that Mo-C codoping could curtail the energy gap and shift the absorption edge toward visible range. Under the illumination of visible light, codoped TiO2 films give rise to stronger photocurrent due to smaller band gaps. It is also found that Mo, C codoping results in a porous surface, whose area declines gradually with increasing carbon content. Carbon and Molybdenum doses were delicately optimized. Under the illumination of visible light, sample doped with 9.78at% carbon and 0.36at% Mo presents the strongest photocurrent which is about 8 times larger than undoped TiO2 films, and about 6 times larger than samples doped with Mo only.展开更多
Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photocond...Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photoconductivity decays indicates that Ti(iso-C3H7O)4 treatment leads to an increased concentration of photogenerated charge carriers and a fast interfacial transfer rate of holes via the surface modification of the freshly growing TiO2 nanocrystallites.展开更多
TiO_2 films were coated on the surface of diamond particles using a sol-gel method. The effects of heat treatment temperature on the morphology, phase composition and chemical bond of diamond particles coated with TiO...TiO_2 films were coated on the surface of diamond particles using a sol-gel method. The effects of heat treatment temperature on the morphology, phase composition and chemical bond of diamond particles coated with TiO2 films were investigated through SEM, TEM, X-ray diffraction analysis, Raman spectroscopy, FTIR, and XPS. The results showed that when being heat-treated at 600 ℃, the amorphous TiO_2 film transfered to the anatase film which bonded well with diamond substrate. Meanwhile, the Ti-O-C bond formed between TiO2 film and diamond substrate. When being heat-treated at 800 ℃, TiO2 film was still anatase, and partial diamond began to graphitize. The graphitizated carbon could also form the Ti-O-C bond with TiO_2 film, although TiO_2 film would tend to crack in this case.展开更多
The microstructure properties of the sol-gel derived TiO2 films were studied by the atomic force microscopy (AFM). The films were prepared by dip coating process. The optical properties of the films were explained on ...The microstructure properties of the sol-gel derived TiO2 films were studied by the atomic force microscopy (AFM). The films were prepared by dip coating process. The optical properties of the films were explained on the basis of the microstructure of the films.展开更多
TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and ...TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and extinction coefficient distributions as well as the thickness of films calculated from transmission spectrum were obtained. The optimization problem was also solved using a method based on a constrained nonlinear programming algorithm.展开更多
A photocatalytic oxidation method for determination of chemical oxygen demand (COD) using nano-TiO2 film, based on the use of a nano-TiO2-Ce(SO4)2 system and electrochemical detection, was proposed. The technique ...A photocatalytic oxidation method for determination of chemical oxygen demand (COD) using nano-TiO2 film, based on the use of a nano-TiO2-Ce(SO4)2 system and electrochemical detection, was proposed. The technique was originated from the direct determination of the Ce(Ⅲ) concentration change resulting from photocatalytic oxidation of organic compounds. Ce(Ⅲ), which was produced by photocatalytic reduction of Ce(SO4)2, could be measured at a multi-walled carbon nanotubes (MWNT) chemically modified electrode (CME). The COD values by this method were calculated from the differential pulse voltammetry (DPV) current of Ce(Ⅲ) at the CME. Under the optimal operation conditions, the detection limit of 0.5 mg·L^-1 COD with the linear range of 1-600 mg·L^-1 was achieved. This method was also applied to determination of various COD of ground water and wastewater samples. The resuits were in good agreement with those from the conventional COD methods, i.e., permanganate and dichromate ones.展开更多
The submicron chromium dioxide(CrO2) thin film was fabricated on a poly-crystal titania(TiO2) film using Si wafers as substrates by atmospheric pressure chemical vapor deposition(CVD) method. X-Ray diffraction p...The submicron chromium dioxide(CrO2) thin film was fabricated on a poly-crystal titania(TiO2) film using Si wafers as substrates by atmospheric pressure chemical vapor deposition(CVD) method. X-Ray diffraction patterns show that the CrO2 films were pure rutile structure. Scanning electron microscopy(SEM) images indicate that the CrO2 films consisted of submicron grains with a grain size of 250--750 rim. The magnetic researches reveal that the magnetic easy axis is parallel to the films, and at room temperature, the CrO2 films show linear magnetoresistance.展开更多
In this work three different mesoporous TiO2 film electrodes were prepared and used for the immobilization of Cytochrome c (Cyt-c). Films prepared via a standard sol-gel route (SG-films) were compared with commerc...In this work three different mesoporous TiO2 film electrodes were prepared and used for the immobilization of Cytochrome c (Cyt-c). Films prepared via a standard sol-gel route (SG-films) were compared with commercially available benchmark nanotitania materials, namely P25 Degussa (P25-films) and Dyesol nanopaste (Dyesol films). Their properties, film deposition characteristics and their abilities to adsorb protein molecules in a stable and functional way were examined. We investigated whether it is possible, rather than preparing TiO2 films using multistep, lengthy and not always reproducible sol-gel procedures, to use commercially available nanotitania materials and produce reproducible films faster that exhibit all the properties that make TiO2 films ideal for protein immobilization. Although these materials are formulated primarily for dye-sensitized solar cell applications, in this study we found out that protein immobilization is facile and remarkably stable on all of them. We also investigated their electrochemical properties by using cyclic voltammetry and spectroelectrochemistry and found out that not only direct reduction of Fe(III)-heme to Fe(II)-heme of immobilized Cyt-c was possible on all flms but that the adsorbed protein remained electroactive.展开更多
Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface m...Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface morphology of the films prepared were studied.Thin films obtained after spraying for 600 s were aged atroom temperature to form a porous TiO2 network with pores in the size range of 100 - 500 nm.Thicker filmswere prepared by spraying for 3 000 s,but these cracked on drying although it can be concluded that films pre-pared using a higher substrate temperature were denser.By this method,SiC coating was also prepared on anAl2O3 substrate using polysilane as a precursor.The result implies the potential of an industrial production ofdye sensitized solar cells by electrospraying technique.展开更多
A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of ...A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min, dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.展开更多
We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hex...We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.展开更多
In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was ...In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was investigated. X-ray diffraction pattern for pure and doped titanium dioxide films with different doping different ratio with Bi show that these films have amorphous structure oanvert to polycrystalline structure with annealing and doping and have a good identically with standard peaks for Anatase and Rutile phases. The orientation was at specific direction for Rutile. The crystalline of films increases by the increase of doping ratio. The crystalline increased with annealing temperature. Annealed films at different annealing temperatures have been studied. The results show that these films have two activation energies and by increasing the doping ratio, the activation energies and the conductivity increase. Both the annealing and composition effects on Hall constant, density of electron carders and Hall mobility are studied. Hall Effect measurements show that all films have n- type charge conductivity and the concentration increases while the mobility decreases with doping and annealing.展开更多
Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-...Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-WO3 composite film shows enhanced photocurrent density, four times than the pure WO3 film illuminated under xenon lamp, and higher incident-photon-to-current conversion e^ciency. By varying the initial TiO2 film thickness, such composite structures could be optimized to obtain the highest photocurrent density. We believe that thin TiO2 films improve the light response and increase the surface roughness of WO3 films. Furthermore, the existence of the heterojunction results in the e^cient charge carriers' separation, transfer process, and a lower recombination of electron-hole pairs, which is beneficial for the enhancement of photocurrent density.展开更多
Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, toget...Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, together with magnesium nitrate hexahydrate pellets, were suspended in propan-2-ol inside an EPD cell. The electrodes, placed 1.2 cm apart, were partially immersed in the suspension and a DC potential applied across them. Key EPD process parameters, which include applied DC electric field, deposition time and solid concentration in suspension, were optimized through visual inspection and from UV-Vis-NIR spectrophotometer spectra. The highest (55%) transmittance was obtained for films with deposition time of 90 s, powder concentration of 0.01 g/40 mL, and 35 V DC (direct current) voltage. XRD micrographs confirmed that TiO2 and Nb2O5 particles were presented in the composite film. SEM (scanning electron microscope) micrographs of the composite electrode thin films showed that porous films of high quality with well controlled morphology were deposited by using the EPD technique.展开更多
文摘A novel titanium dioxide (TiO2) film comprising both nanotubes and nanopaticles was fabricated by an anodization process of the modified titanium. The local electric field at the anodized surface was simulated and its influence on the morphology of the TiO2 film was discussed. The results show that the electric field strength is enhanced by the covering. The growth rate of TiO2 increases with the assist of the local electric field. However, TiO2 dissolution is hindered since the local electric field prevents [TiF6]6- from diffusing. It means that the balance condition for the formation of nanotubes is broken, and TiO2 nanoparticles are formed. Moreover, the crystal structure of the TiO2 film was confirmed using X-ray diffraction and Raman analysis. The anatase is a main phase for the proposed film.
基金supported by the National Natural Science Foundation of China(No.50001013)Hundred-Talent Project of CAS and the NSFC for Outstanding Young Scientists(No.59625103).
文摘TiO2 thin films were prepared by DC magnetron sputtering with the oxygen flow rate higher than the threshold. The film deposited for 5 h was of anatase phase with a preferred orientation along the <220> direction, but the films deposited for 2 and 3 h were amorphous. The transmittance and photocatalytic activity of the TiO2 films increased constantly with increasing film thickness. When the annealing temperature was lower than 700℃, only anatase grew in the TiO2 film. TiO2 phase changed from anatase to rutile when the annealing temperature was above 800℃. The photocatalytic activity decreased with increasing annealing temperature.
基金Funded by Chinese National Key Scientific Projects(No.2012CB934303)the Guizhou Education Foundation(KY[2015]332)
文摘Mo-C codoped TiO2 films were prepared by RF magnetron cosputtering. Ultraviolet-visible spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray Analysis and X-Ray Diffraction were used to study the influences of codoping on energy gap, surface morphology, valence states of elements, ions content and crystal structure, respectively. The concentration of photogenerated carriers was measured by studying photocurrent density, while catalytic property was evaluated by observing degradation rate of methylene blue under visible light. A Mo-doped TiO2 film, whose content of Mo had been optimized in advance, was prepared and later used for subsequent comparisons with codoped samples. The result indicates that Mo-C codoping could curtail the energy gap and shift the absorption edge toward visible range. Under the illumination of visible light, codoped TiO2 films give rise to stronger photocurrent due to smaller band gaps. It is also found that Mo, C codoping results in a porous surface, whose area declines gradually with increasing carbon content. Carbon and Molybdenum doses were delicately optimized. Under the illumination of visible light, sample doped with 9.78at% carbon and 0.36at% Mo presents the strongest photocurrent which is about 8 times larger than undoped TiO2 films, and about 6 times larger than samples doped with Mo only.
基金This work was supported by National Research Fund for Fundamental Key Project(G2000028205)Innovative Foundation of Chinese Academy of Sciences(KGCX2-303-02)the Project of the National Natural Science Foundation of China(29873057).
文摘Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photoconductivity decays indicates that Ti(iso-C3H7O)4 treatment leads to an increased concentration of photogenerated charge carriers and a fast interfacial transfer rate of holes via the surface modification of the freshly growing TiO2 nanocrystallites.
基金Funded by National Natural Science Foundation of China(No.51375157)Shanghai Aerospace Eighth Research Institute SAST Foundation(No.2015044)+1 种基金the Central University Basic Scientific Research Business Expenses,State Key Laboratory of Silicate Materials for Architectures Program(No.SYSJJ2015-09)the Hunan Province Key Laboratory of Environmental Photocatalysis Application Technology Program(No.CCSU-KF-1504)
文摘TiO_2 films were coated on the surface of diamond particles using a sol-gel method. The effects of heat treatment temperature on the morphology, phase composition and chemical bond of diamond particles coated with TiO2 films were investigated through SEM, TEM, X-ray diffraction analysis, Raman spectroscopy, FTIR, and XPS. The results showed that when being heat-treated at 600 ℃, the amorphous TiO_2 film transfered to the anatase film which bonded well with diamond substrate. Meanwhile, the Ti-O-C bond formed between TiO2 film and diamond substrate. When being heat-treated at 800 ℃, TiO2 film was still anatase, and partial diamond began to graphitize. The graphitizated carbon could also form the Ti-O-C bond with TiO_2 film, although TiO_2 film would tend to crack in this case.
基金We are very grateful to the National Natural Science of Foundation of China(No.69978017,59802007)Shanghai Education Committee(No JW99-TJ-03)for their help and financial supports
文摘The microstructure properties of the sol-gel derived TiO2 films were studied by the atomic force microscopy (AFM). The films were prepared by dip coating process. The optical properties of the films were explained on the basis of the microstructure of the films.
文摘TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and extinction coefficient distributions as well as the thickness of films calculated from transmission spectrum were obtained. The optimization problem was also solved using a method based on a constrained nonlinear programming algorithm.
基金Project supported by the National Natural Science Foundation of China (No. 20327001), the Key Research & Development Program of China (No. 2004BA210A07).
文摘A photocatalytic oxidation method for determination of chemical oxygen demand (COD) using nano-TiO2 film, based on the use of a nano-TiO2-Ce(SO4)2 system and electrochemical detection, was proposed. The technique was originated from the direct determination of the Ce(Ⅲ) concentration change resulting from photocatalytic oxidation of organic compounds. Ce(Ⅲ), which was produced by photocatalytic reduction of Ce(SO4)2, could be measured at a multi-walled carbon nanotubes (MWNT) chemically modified electrode (CME). The COD values by this method were calculated from the differential pulse voltammetry (DPV) current of Ce(Ⅲ) at the CME. Under the optimal operation conditions, the detection limit of 0.5 mg·L^-1 COD with the linear range of 1-600 mg·L^-1 was achieved. This method was also applied to determination of various COD of ground water and wastewater samples. The resuits were in good agreement with those from the conventional COD methods, i.e., permanganate and dichromate ones.
基金Supported by the the National Natural Science Foundation of China(Nos.50972048, 61201007), the Fundamental Research Fund for the Central Universities of China(No.ZYGX2011 J022), the Youth Fund of Education Department of Jiangxi Province of China(No.GJJ12575) and the Open Project of State Key Laboratory of Superhard Materials(Jilin University) of China (No.201213).
文摘The submicron chromium dioxide(CrO2) thin film was fabricated on a poly-crystal titania(TiO2) film using Si wafers as substrates by atmospheric pressure chemical vapor deposition(CVD) method. X-Ray diffraction patterns show that the CrO2 films were pure rutile structure. Scanning electron microscopy(SEM) images indicate that the CrO2 films consisted of submicron grains with a grain size of 250--750 rim. The magnetic researches reveal that the magnetic easy axis is parallel to the films, and at room temperature, the CrO2 films show linear magnetoresistance.
文摘In this work three different mesoporous TiO2 film electrodes were prepared and used for the immobilization of Cytochrome c (Cyt-c). Films prepared via a standard sol-gel route (SG-films) were compared with commercially available benchmark nanotitania materials, namely P25 Degussa (P25-films) and Dyesol nanopaste (Dyesol films). Their properties, film deposition characteristics and their abilities to adsorb protein molecules in a stable and functional way were examined. We investigated whether it is possible, rather than preparing TiO2 films using multistep, lengthy and not always reproducible sol-gel procedures, to use commercially available nanotitania materials and produce reproducible films faster that exhibit all the properties that make TiO2 films ideal for protein immobilization. Although these materials are formulated primarily for dye-sensitized solar cell applications, in this study we found out that protein immobilization is facile and remarkably stable on all of them. We also investigated their electrochemical properties by using cyclic voltammetry and spectroelectrochemistry and found out that not only direct reduction of Fe(III)-heme to Fe(II)-heme of immobilized Cyt-c was possible on all flms but that the adsorbed protein remained electroactive.
基金supported by the Science Foun-dation of Educational Commission and Provincial Key Laboratory Program of Liaoning Province of China(Grant No.2008593 and CL-200902)~~
文摘Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface morphology of the films prepared were studied.Thin films obtained after spraying for 600 s were aged atroom temperature to form a porous TiO2 network with pores in the size range of 100 - 500 nm.Thicker filmswere prepared by spraying for 3 000 s,but these cracked on drying although it can be concluded that films pre-pared using a higher substrate temperature were denser.By this method,SiC coating was also prepared on anAl2O3 substrate using polysilane as a precursor.The result implies the potential of an industrial production ofdye sensitized solar cells by electrospraying technique.
文摘A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min, dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.
文摘We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.
文摘In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was investigated. X-ray diffraction pattern for pure and doped titanium dioxide films with different doping different ratio with Bi show that these films have amorphous structure oanvert to polycrystalline structure with annealing and doping and have a good identically with standard peaks for Anatase and Rutile phases. The orientation was at specific direction for Rutile. The crystalline of films increases by the increase of doping ratio. The crystalline increased with annealing temperature. Annealed films at different annealing temperatures have been studied. The results show that these films have two activation energies and by increasing the doping ratio, the activation energies and the conductivity increase. Both the annealing and composition effects on Hall constant, density of electron carders and Hall mobility are studied. Hall Effect measurements show that all films have n- type charge conductivity and the concentration increases while the mobility decreases with doping and annealing.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174137,11474215 and 21204058the Natural Science Foundation for the Youth of Jiangsu Province under Grant No BK20130284the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-WO3 composite film shows enhanced photocurrent density, four times than the pure WO3 film illuminated under xenon lamp, and higher incident-photon-to-current conversion e^ciency. By varying the initial TiO2 film thickness, such composite structures could be optimized to obtain the highest photocurrent density. We believe that thin TiO2 films improve the light response and increase the surface roughness of WO3 films. Furthermore, the existence of the heterojunction results in the e^cient charge carriers' separation, transfer process, and a lower recombination of electron-hole pairs, which is beneficial for the enhancement of photocurrent density.
文摘Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, together with magnesium nitrate hexahydrate pellets, were suspended in propan-2-ol inside an EPD cell. The electrodes, placed 1.2 cm apart, were partially immersed in the suspension and a DC potential applied across them. Key EPD process parameters, which include applied DC electric field, deposition time and solid concentration in suspension, were optimized through visual inspection and from UV-Vis-NIR spectrophotometer spectra. The highest (55%) transmittance was obtained for films with deposition time of 90 s, powder concentration of 0.01 g/40 mL, and 35 V DC (direct current) voltage. XRD micrographs confirmed that TiO2 and Nb2O5 particles were presented in the composite film. SEM (scanning electron microscope) micrographs of the composite electrode thin films showed that porous films of high quality with well controlled morphology were deposited by using the EPD technique.