期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The abscisic acid-responsive transcriptional regulatory module CsERF110-CsERF53 orchestrates citrus fruit coloration
1
作者 Quan Sun Zhengchen He +8 位作者 Di Feng Ranran Wei Yingzi Zhang Junli Ye Lijun Chai Juan Xu Yunjiang Cheng Qiang Xu Xiuxin Deng 《Plant Communications》 SCIE CSCD 2024年第11期157-172,共16页
Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely... Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear.Here,we identified two master regulators of ABA-mediated citrus fruit coloration,CsERF110 and CsERF53,which activate the expression of carotenoid metabolism genes(CsGGPPS,CsPSY,CsPDS,CsCRTISO,CsLCYB2,CsLCYE,CsHYD,CsZEP,and CsNCED2)to facilitate carotenoid accumulation.Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53.We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53.Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling,thereby orchestrating citrus fruit coloration.Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops,the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches,further contributing to improving the quality of citrus and other carotenoid-rich crops. 展开更多
关键词 citrus abscisic acid ABA fruit coloration carotenoid metabolism ethylene responsive factor ERF transcriptional regulatory module
原文传递
Expression analysis of the R2R3-MYB gene family in upland cotton and functional study of GhMYB3D5 in regulating Verticillium wilt resistance
2
作者 Jie Liu Zhicheng Wang +15 位作者 Bin Chen Guoning Wang Huifeng Ke Jin Zhang Mengjia Jiao Yan Wang Meixia Xie Yanbin Li Dongmei Zhang Xingyi Wang Qishen Gu Zhengwen Sun Liqiang Wu Xingfen Wang Zhiying Ma Yan Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3294-3310,共17页
Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance... Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance between growth and defense.However,few transcriptional regulators specifically respond to Verticillium dahliae and the underlying mechanism has not been identified in cotton.In this study,we found that the that expression of most R2R3-MYB members in cotton is significantly changed by V.dahliae infection relative to the other MYB types.One novel R2R3-MYB transcription factor(TF)that specifically responds to V.dahliae,GhMYB3D5,was identified.GhMYB3D5 was not expressed in 15 cotton tissues under normal conditions,but it was dramatically induced by V.dahliae stress.We functionally characterized its positive role and underlying mechanism in VW resistance.Upon V.dahliae infection,the up-regulated GhMYB3D5 bound to the GhADH1 promoter and activated GhADH1expression.In addition,GhMYB3D5 physically interacted with GhADH1 and further enhanced the transcriptional activation of GhADH1.Consequently,the transcriptional regulatory module GhMYB3D5-GhADH1 then promoted lignin accumulation by improving the transcriptional levels of genes related to lignin biosynthesis(GhPAL,GhC4H,Gh4CL,and GhPOD/GhLAC)in cotton,thereby enhancing cotton VW resistance.Our results demonstrated that the GhMYB3D5 promotes defense-induced lignin accumulation,which can be regarded as an effective way to orchestrate plant immunity and growth. 展开更多
关键词 COTTON Verticillium wilt resistance GhMYB3D5 GhADH1 transcriptional regulatory module
下载PDF
Functional predictability of universal gene circuits in diverse microbial hosts
3
作者 Chenrui Qin Tong Xu +5 位作者 Xuejin Zhao Yeqing Zong Haoqian M.Zhang Chunbo Lou Qi Ouyang Long Qian 《Quantitative Biology》 CAS CSCD 2024年第2期129-140,共12页
Although the principles of synthetic biology were initially established in model bacteria,microbial producers,extremophiles and gut microbes have now emerged as valuable prokaryotic chassis for biological engineering.... Although the principles of synthetic biology were initially established in model bacteria,microbial producers,extremophiles and gut microbes have now emerged as valuable prokaryotic chassis for biological engineering.Extending the host range in which designed circuits can function reliably and predictably presents a major challenge for the concept of synthetic biology to materialize.In this work,we systematically characterized the cross-species universality of two transcriptional regulatory modules—the T7 RNA polymerase activator module and the repressors module—in three non-model microbes.We found striking linear relationships in circuit activities among different organisms for both modules.Parametrized model fitting revealed host non-specific parameters defining the universality of both modules.Lastly,a genetic NOT gate and a band-pass filter circuit were constructed from these modules and tested in non-model organisms.Combined models employing host non-specific parameters were successful in quantitatively predicting circuit behaviors,underscoring the potential of universal biological parts and predictive modeling in synthetic bioengineering. 展开更多
关键词 circuit predictability host-independent genetic circuits host-nonspecific parameters parts characterization transcriptional regulatory modules
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部