An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkali...An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.展开更多
The Cu?Al composite casts were prepared by the method of pouring molten aluminum. The solidification process and themicrostructure of the transition layer were investigated during the recombination process of the liqu...The Cu?Al composite casts were prepared by the method of pouring molten aluminum. The solidification process and themicrostructure of the transition layer were investigated during the recombination process of the liquid Al and the solid Cu. The results reveal that the microstructure of the transition layer in the Cu?Al composite cast consists of α(Al)+α(Al)?CuAl2 eutectic,α(Al)?CuAl2 eutectic, CuAl2+α(Al)?CuAl2 eutectic and Cu9Al4. Additionally, the pouring temperature, cooling mode of the Cu platesurface and start time of the forced cooling after pouring have no effect on the microstructure species. But the proportion of thevarious microstructures in the transition layer changes with the process parameters. The pure Al at the top of the transition layer startsto solidify first and then the α(Al) phase grows in a dendritic way, while the CuAl2 phase exhibits plane or cellular crystal growth from the two sides of the transition layer towards its interior. The stronger the cooling intensity of the Cu plate outer surface, the more developed the dendrite, and the easier it is for the CuAl2 phase to grow into a plane crystal.展开更多
The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to invest...The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.展开更多
CTD data on standard levels collected during July and December in 1998 and the cubic spline interpolating method were used to study the characteristics of the transition layer temperature and salinity. The thermocline...CTD data on standard levels collected during July and December in 1998 and the cubic spline interpolating method were used to study the characteristics of the transition layer temperature and salinity. The thermocline undergoes remarkable seasonal variation in the South China Sea (SCS), and especially in the region of the north shelf where the thermocline disappears in December. The thermocline is stronger and thicker in July than in December. There is no obvious seasonal variation in the halocline. Due to the upper Ekman transport caused by monsoon over the SCS, the thermocline slopes upward in July and downward in December from east to west in the northern SCS. The characteristics of the thermocline and halocline are influenced by local eddies in the SCS. The Zhujiang diluted flow influences significantly the SCS shelf’s halocline.展开更多
The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference b...The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference between pyrolysis carbon black and furnace black N326,which is commonly used in rubber,is obvious compared with chemical property.The pyrolysis carbon black was used to replace furnace black N326 in the transition layer of all steel load Radial tire rubber through experimental study.It was found that the compression heat generation and dynamic loss(Tanδ)of the blend rubber before and after aging were obviously reduced,the elongation at break and resilience increased,while the tensile stress and tear strength decreased by 100%and 300%,but the hardness and tensile strength changed little before and after aging.According to the latest raw material price calculation,15 used tire pyrolysis carbon black instead of furnace carbon black N326 used in all steel Radial tire transition layer rubber application,excluding labor costs,electricity and equipment depreciation,a ton of blended rubber saves about$22.86 in production costs.展开更多
Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroe...Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroelectric interracial coupling between two slabs. The hysteresis loop of a bilayer film is investigated. The results show that the surface transition layer in a ferroelectric bilayer film plays a significant role in realizing the multiple-state memory.展开更多
In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–va...In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–valley coupling in this system,which provides spin addressable valley degrees of freedom for information storage and processing.On the other hand,large exciton binding energy up to hundreds of me V enables excitons to be stable carriers of valley information.Valley polarization,marked by an imbalanced exciton population in two inequivalent valleys(+K and-K),is the core of valleytronics as it can be utilized to store binary information.Motivated by the potential applications,we present a thorough overview of the recent advancements in the generation,relaxation,manipulation,and transport of the valley polarization in nonmagnetic transition metal dichalcogenide layered semiconductors.We also discuss the development of valleytronic devices and future challenges in this field.展开更多
Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface...Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface arc plasma disturbance experiment to promote hypersonic transition was carried out in theΦ0.25 m double-throat Ludwieg tube wind tunnel at Huazhong University of Science and Technology.Contacting printed circuit board sensors and non-contact focused laser differential interferometry testing technology were used in combination.Experimental results showed that the low-frequency surface arc plasma actuation had obvious stimulation effects on the second-mode unstable wave and could promote boundary layer transition by changing the spectral characteristics of the second-mode unstable wave.At the same time,the plasma actuation could promote energy exchange between the second-mode unstable wave and other unstable waves.Finally,the corresponding control mechanism is discussed.展开更多
The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy ...The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with x〉0.3. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe2 crystal becomes visibly unstable with Te substitution and vanishes when x=0.3. The 1T-TaSe2-xTex (0.3≤x≤1.3) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong qq-dependent electron-phonon coupling-induced period-lattice-distortion as identified in TaTe22. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.展开更多
To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering...To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering(NPLS),supersonic flat-plate boundary layer transition induced by SDJ is experimentally investigated in an Ma-2.95 low-turbulence wind tunnel.Streamwise and spanwise NPLS images are obtained to analyze fine flow structures of the whole transition process.The results reveal the transition control mechanisms that on the one hand,the jet-induced shear layer produces unstable Kelvin–Helmholtz instabilities in the wake flow,on the other hand,the jets also generates an adverse pressure gradient in the boundary layer and induce unstable streak structures,which gradually break down into turbulence downstream.The paper provides a new method for transition control of high-speed boundary layer,and have prospect both in theory and engineering application.展开更多
A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically st...A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically studied as a solid acid to realize the dehydration of fructose to 5-hydroxymethylfurfural (HMF). The transition metal oxide samples were characterized with ICP-OES, EDS, XRD, XPS, SEM, TGA, FT-IR, N-2 adsorption-desorption and NH3-TPD. The influential factors such as reaction temperature, reaction time, solvent, catalyst amount and substrate concentration were deeply investigated. The optimized fructose conversion rate of 99% with HMF yield of 67% were achieved after 30 min at 140 degrees C in dimethylsulfoxide. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-d...As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.展开更多
The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
Infrared spectra of (n-C_9H_(19)NH_3)_2CuCl_4 in three solid phases were investigated. It was found that the phase transition at T_(cl)(25℃) arises from the change of the interaction and packing structure of the chai...Infrared spectra of (n-C_9H_(19)NH_3)_2CuCl_4 in three solid phases were investigated. It was found that the phase transition at T_(cl)(25℃) arises from the change of the interaction and packing structure of the chain. The phase transition at T_(c2)(34℃)is related to the change of a partial conformational order-disorder. The GTC or GTG' and small concentration of TG structure near CH_3 group exist in phase Ⅲ (above 38℃).展开更多
The evolution of Gortler vortices and its interaction with other instabilities are investigated in this paper. Both the Mack mode and the Gortler mode exist in hypersonic boundary-layer flows over concave surfaces, an...The evolution of Gortler vortices and its interaction with other instabilities are investigated in this paper. Both the Mack mode and the Gortler mode exist in hypersonic boundary-layer flows over concave surfaces, and their interactions are crucially important in boundary layer transition. We carry out a direct numerical simulation to explore the interaction between the GOrtler and the oblique Mack mode. The results indicate that the interaction between the forced Gortler mode and the oblique Mack mode promotes the onset of the transition. The forced oblique Mack mode is susceptible to nonlinear interaction. Because of the development of the GOrtler mode, the forced Mack mode and other harmonic modes are excited.展开更多
Different methods to detect boundary layer transition are investigated within the scope of this paper. Laminar and turbulent boundary layers exhibit a significantly different behavior, not only regarding skin friction...Different methods to detect boundary layer transition are investigated within the scope of this paper. Laminar and turbulent boundary layers exhibit a significantly different behavior, not only regarding skin friction but also for heat-transfer which affects the blade cooling design. The present work presents a novel and non-intrusive measurement technique to detect the transition, based on acoustic concepts. The reliability of the technique was investigated by means of boundary layer measurements over a fiat plate in subsonic flow conditions. After a preliminary assessment with a conventional Preston tube, a row of microphones were installed along the plate to correlate transition pressure fluctuations. To provide a comprehensive representation of the experiment, dedicated measurements with a fast response aerodynamic pressure probe were performed to determine the turbulence intensity and the dissipation rate upstream of the flat plate. The experimental results were systematically compared with calculations performed with three different computational fluid dynamics solvers (ANSYS-Fluent, ANSYS-CFX, OpenFOAM) and using both the k-k1-ω and the γ-Reθ transition models. Results show a fair agreement between CFD (computational fluid dynamics) predictions and the acoustic technique, suggesting that this latter might represent an interesting alternative option for transition measurements.展开更多
The choice of leading-edge aspect ratio (AR) plays a crucial role when planning boundary layer wind tunnel tests on a flat plate. Poor selection of the leading-edge profile hampers effectiveness of the experiment and ...The choice of leading-edge aspect ratio (AR) plays a crucial role when planning boundary layer wind tunnel tests on a flat plate. Poor selection of the leading-edge profile hampers effectiveness of the experiment and increases testing costs associated with interchanging of leading edges to attain accurate results. Thus, the appropriate selection of the leading edge is a very crucial part of the wind tunnel experiment process. It is argued that the curvature of the leading edge and thus the AR is of paramount importance to achieve accurate results from the wind tunnel testing. In this project, seven different elliptical leading edges were tested, and their performance was compared with an ideal leading edge with zero thickness. Experiments and computation have been done for leading edges ranging from AR6 to AR20. Results were evaluated for boundary layer transition onset location, and it was found that AR20 has the least influence on the flow structure when compared to the ideal leading edge. A study of the flow structure at the stagnation point indicates an increase in adverse pressure gradient with an increase in the AR but also shows a decrease in the size of the stagnation region. The presence of a higher AR leading edge reduces the turbulent spot production rate, which is one of the primary causes of boundary layer transition. This paper presents a correlation that enables aerodynamicists to quantify the impact of the leading-edge AR on transition. A typical case is also presented to compare the relative performance of a wedge and the higher AR leading edge, which provides a choice between an elliptical or a wedge-shaped leading edge.展开更多
We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liqu...We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liquid phase transition of the liquid titanium. The typical feature of the liquid–liquid phase transition is layering, which is induced by the slit size,pressure and temperature. We highlight the fact that the slit size and pressure will determine the number of layers. In addition, with the change in the slit size, the density of the confined liquid expresses a fluctuating law. The phase diagram of the layering transition is drawn to clearly understand the layering. This study provides insights into the liquid–liquid phase transition of liquid metal in a confined space.展开更多
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl...The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects.展开更多
Ceramic matrix composites(CMCs) are one of the most promising materials in the field of gas turbines,with superior weight and thermal properties. Its surface morphology is different from the traditional casting airfoi...Ceramic matrix composites(CMCs) are one of the most promising materials in the field of gas turbines,with superior weight and thermal properties. Its surface morphology is different from the traditional casting airfoil components, which mainly comes from different weaving methods and different braided tow thickness. However, few people have studied the influence of surface morphology of ceramic matrix composites(CMCs) on the development of boundary layer and the resulting flow loss. In this paper, Tex Gen is used to generate different surface morphology structures of ceramic matrix composites(CMCs), and the surface flow characteristics of corresponding CMCs plates are numerically studied. It is found that the slope of the displacement thickness of the woven surface first increases and then decreases in the whole transition interval. Thicker braided tow thickness and denser braiding method will induce earlier flow transition phenomenon and produce greater flow loss;The flow loss on the surface of CMCs plate is mainly composed of the vortex loss in the pit and the boundary layer loss outside the pit, and the boundary layer loss is dominant. The weaving methods has a greater influence on the flow state and flow loss of the boundary layer.展开更多
基金Project(20120407)supported by the Science and Technology Key Development Plan of Jilin Province,China
文摘An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.
基金Project(LJQ2014062)supported by the Outstanding Young Scholars in Colleges and Universities of Liaoning Province,China
文摘The Cu?Al composite casts were prepared by the method of pouring molten aluminum. The solidification process and themicrostructure of the transition layer were investigated during the recombination process of the liquid Al and the solid Cu. The results reveal that the microstructure of the transition layer in the Cu?Al composite cast consists of α(Al)+α(Al)?CuAl2 eutectic,α(Al)?CuAl2 eutectic, CuAl2+α(Al)?CuAl2 eutectic and Cu9Al4. Additionally, the pouring temperature, cooling mode of the Cu platesurface and start time of the forced cooling after pouring have no effect on the microstructure species. But the proportion of thevarious microstructures in the transition layer changes with the process parameters. The pure Al at the top of the transition layer startsto solidify first and then the α(Al) phase grows in a dendritic way, while the CuAl2 phase exhibits plane or cellular crystal growth from the two sides of the transition layer towards its interior. The stronger the cooling intensity of the Cu plate outer surface, the more developed the dendrite, and the easier it is for the CuAl2 phase to grow into a plane crystal.
基金Projects(51701061,51705129) supported by the National Natural Science Foundation of ChinaProject(17391001D) supported by the Department of Science and Technology of Hebei Province,ChinaProject(2017-Z02) supported by the State Key Lab of Advanced Metals and Materials,China
文摘The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.
文摘CTD data on standard levels collected during July and December in 1998 and the cubic spline interpolating method were used to study the characteristics of the transition layer temperature and salinity. The thermocline undergoes remarkable seasonal variation in the South China Sea (SCS), and especially in the region of the north shelf where the thermocline disappears in December. The thermocline is stronger and thicker in July than in December. There is no obvious seasonal variation in the halocline. Due to the upper Ekman transport caused by monsoon over the SCS, the thermocline slopes upward in July and downward in December from east to west in the northern SCS. The characteristics of the thermocline and halocline are influenced by local eddies in the SCS. The Zhujiang diluted flow influences significantly the SCS shelf’s halocline.
文摘The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference between pyrolysis carbon black and furnace black N326,which is commonly used in rubber,is obvious compared with chemical property.The pyrolysis carbon black was used to replace furnace black N326 in the transition layer of all steel load Radial tire rubber through experimental study.It was found that the compression heat generation and dynamic loss(Tanδ)of the blend rubber before and after aging were obviously reduced,the elongation at break and resilience increased,while the tensile stress and tear strength decreased by 100%and 300%,but the hardness and tensile strength changed little before and after aging.According to the latest raw material price calculation,15 used tire pyrolysis carbon black instead of furnace carbon black N326 used in all steel Radial tire transition layer rubber application,excluding labor costs,electricity and equipment depreciation,a ton of blended rubber saves about$22.86 in production costs.
文摘Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroelectric interracial coupling between two slabs. The hysteresis loop of a bilayer film is investigated. The results show that the surface transition layer in a ferroelectric bilayer film plays a significant role in realizing the multiple-state memory.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2803900)the National Natural Science Foundation of China(Grant Nos.61704121 and 61974075)+2 种基金Natural Science Foundation of Tianjin City(Grant Nos.19JCQNJC00700 and 22JCZDJC00460)Tianjin Municipal Education Commission(Grant No.2019KJ028)Fundamental Research Funds for the Central Universities(Grant No.22JCZDJC00460)。
文摘In recent years,valleytronics researches based on 2D semiconducting transition metal dichalcogenides have attracted considerable attention.On the one hand,strong spin–orbit interaction allows the presence of spin–valley coupling in this system,which provides spin addressable valley degrees of freedom for information storage and processing.On the other hand,large exciton binding energy up to hundreds of me V enables excitons to be stable carriers of valley information.Valley polarization,marked by an imbalanced exciton population in two inequivalent valleys(+K and-K),is the core of valleytronics as it can be utilized to store binary information.Motivated by the potential applications,we present a thorough overview of the recent advancements in the generation,relaxation,manipulation,and transport of the valley polarization in nonmagnetic transition metal dichalcogenide layered semiconductors.We also discuss the development of valleytronic devices and future challenges in this field.
基金supported by National Science and Technology Major Project(No.J2019-II-0014-0035)。
文摘Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface arc plasma disturbance experiment to promote hypersonic transition was carried out in theΦ0.25 m double-throat Ludwieg tube wind tunnel at Huazhong University of Science and Technology.Contacting printed circuit board sensors and non-contact focused laser differential interferometry testing technology were used in combination.Experimental results showed that the low-frequency surface arc plasma actuation had obvious stimulation effects on the second-mode unstable wave and could promote boundary layer transition by changing the spectral characteristics of the second-mode unstable wave.At the same time,the plasma actuation could promote energy exchange between the second-mode unstable wave and other unstable waves.Finally,the corresponding control mechanism is discussed.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921300 and 2012CB821404the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2016YFA0300404+1 种基金the National Natural Science Foundation of China under Grant Nos 11474323,11604372,11274368,91221102,11190022,11674326 and 91422303the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07020000
文摘The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with x〉0.3. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe2 crystal becomes visibly unstable with Te substitution and vanishes when x=0.3. The 1T-TaSe2-xTex (0.3≤x≤1.3) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong qq-dependent electron-phonon coupling-induced period-lattice-distortion as identified in TaTe22. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11602299,11872374,and 51809271)
文摘To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering(NPLS),supersonic flat-plate boundary layer transition induced by SDJ is experimentally investigated in an Ma-2.95 low-turbulence wind tunnel.Streamwise and spanwise NPLS images are obtained to analyze fine flow structures of the whole transition process.The results reveal the transition control mechanisms that on the one hand,the jet-induced shear layer produces unstable Kelvin–Helmholtz instabilities in the wake flow,on the other hand,the jets also generates an adverse pressure gradient in the boundary layer and induce unstable streak structures,which gradually break down into turbulence downstream.The paper provides a new method for transition control of high-speed boundary layer,and have prospect both in theory and engineering application.
基金supported by the National Natural Science Foundation of China (21472189)National Basic Research Program of China (973 Program, 2012CB215304)+2 种基金the Natural Science Foundation of Guangdong Province, China (2015A030312007)Guangdong Key Laboratory of New and Renewable Energy Research and Development (Y607jl1001)Science and Technology Planning Project of Guangdong Province, China (2015A010106010)
文摘A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically studied as a solid acid to realize the dehydration of fructose to 5-hydroxymethylfurfural (HMF). The transition metal oxide samples were characterized with ICP-OES, EDS, XRD, XPS, SEM, TGA, FT-IR, N-2 adsorption-desorption and NH3-TPD. The influential factors such as reaction temperature, reaction time, solvent, catalyst amount and substrate concentration were deeply investigated. The optimized fructose conversion rate of 99% with HMF yield of 67% were achieved after 30 min at 140 degrees C in dimethylsulfoxide. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos. 51309040, 51379025), and the Fundamental Research Funds for the Central Universities (Nos. 3132014224, 3132014318).
文摘As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.
文摘The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
文摘Infrared spectra of (n-C_9H_(19)NH_3)_2CuCl_4 in three solid phases were investigated. It was found that the phase transition at T_(cl)(25℃) arises from the change of the interaction and packing structure of the chain. The phase transition at T_(c2)(34℃)is related to the change of a partial conformational order-disorder. The GTC or GTG' and small concentration of TG structure near CH_3 group exist in phase Ⅲ (above 38℃).
文摘The evolution of Gortler vortices and its interaction with other instabilities are investigated in this paper. Both the Mack mode and the Gortler mode exist in hypersonic boundary-layer flows over concave surfaces, and their interactions are crucially important in boundary layer transition. We carry out a direct numerical simulation to explore the interaction between the GOrtler and the oblique Mack mode. The results indicate that the interaction between the forced Gortler mode and the oblique Mack mode promotes the onset of the transition. The forced oblique Mack mode is susceptible to nonlinear interaction. Because of the development of the GOrtler mode, the forced Mack mode and other harmonic modes are excited.
文摘Different methods to detect boundary layer transition are investigated within the scope of this paper. Laminar and turbulent boundary layers exhibit a significantly different behavior, not only regarding skin friction but also for heat-transfer which affects the blade cooling design. The present work presents a novel and non-intrusive measurement technique to detect the transition, based on acoustic concepts. The reliability of the technique was investigated by means of boundary layer measurements over a fiat plate in subsonic flow conditions. After a preliminary assessment with a conventional Preston tube, a row of microphones were installed along the plate to correlate transition pressure fluctuations. To provide a comprehensive representation of the experiment, dedicated measurements with a fast response aerodynamic pressure probe were performed to determine the turbulence intensity and the dissipation rate upstream of the flat plate. The experimental results were systematically compared with calculations performed with three different computational fluid dynamics solvers (ANSYS-Fluent, ANSYS-CFX, OpenFOAM) and using both the k-k1-ω and the γ-Reθ transition models. Results show a fair agreement between CFD (computational fluid dynamics) predictions and the acoustic technique, suggesting that this latter might represent an interesting alternative option for transition measurements.
文摘The choice of leading-edge aspect ratio (AR) plays a crucial role when planning boundary layer wind tunnel tests on a flat plate. Poor selection of the leading-edge profile hampers effectiveness of the experiment and increases testing costs associated with interchanging of leading edges to attain accurate results. Thus, the appropriate selection of the leading edge is a very crucial part of the wind tunnel experiment process. It is argued that the curvature of the leading edge and thus the AR is of paramount importance to achieve accurate results from the wind tunnel testing. In this project, seven different elliptical leading edges were tested, and their performance was compared with an ideal leading edge with zero thickness. Experiments and computation have been done for leading edges ranging from AR6 to AR20. Results were evaluated for boundary layer transition onset location, and it was found that AR20 has the least influence on the flow structure when compared to the ideal leading edge. A study of the flow structure at the stagnation point indicates an increase in adverse pressure gradient with an increase in the AR but also shows a decrease in the size of the stagnation region. The presence of a higher AR leading edge reduces the turbulent spot production rate, which is one of the primary causes of boundary layer transition. This paper presents a correlation that enables aerodynamicists to quantify the impact of the leading-edge AR on transition. A typical case is also presented to compare the relative performance of a wedge and the higher AR leading edge, which provides a choice between an elliptical or a wedge-shaped leading edge.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1806219 and 52171038)the Special Funding in the Project of the Taishan Scholar Construction Engineering and the Program of Jinan Science and Technology Bureau (Grant No. 2020GXRC019)Key R&D Projects in Shandong Province, China (Grant No. 2021SFGC1001)。
文摘We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liquid phase transition of the liquid titanium. The typical feature of the liquid–liquid phase transition is layering, which is induced by the slit size,pressure and temperature. We highlight the fact that the slit size and pressure will determine the number of layers. In addition, with the change in the slit size, the density of the confined liquid expresses a fluctuating law. The phase diagram of the layering transition is drawn to clearly understand the layering. This study provides insights into the liquid–liquid phase transition of liquid metal in a confined space.
文摘The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects.
基金National Science and Technology Major Project (Y2019-I-0018-0017)。
文摘Ceramic matrix composites(CMCs) are one of the most promising materials in the field of gas turbines,with superior weight and thermal properties. Its surface morphology is different from the traditional casting airfoil components, which mainly comes from different weaving methods and different braided tow thickness. However, few people have studied the influence of surface morphology of ceramic matrix composites(CMCs) on the development of boundary layer and the resulting flow loss. In this paper, Tex Gen is used to generate different surface morphology structures of ceramic matrix composites(CMCs), and the surface flow characteristics of corresponding CMCs plates are numerically studied. It is found that the slope of the displacement thickness of the woven surface first increases and then decreases in the whole transition interval. Thicker braided tow thickness and denser braiding method will induce earlier flow transition phenomenon and produce greater flow loss;The flow loss on the surface of CMCs plate is mainly composed of the vortex loss in the pit and the boundary layer loss outside the pit, and the boundary layer loss is dominant. The weaving methods has a greater influence on the flow state and flow loss of the boundary layer.