The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receive...The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receiver, which exchanges soft extrinsic information between a soft-in soft-out(SISO) detector and an SISO decoder in an iterative fashion, is an efficient method to reduce the uplink inter-beam-interference(IBI),and so the receiving bit error rate(BER).We propose to replace the linear SISO detector of traditional dual-turbo iterative detection and decoding with the AMP detector for the low-density parity-check(LDPC) coded multibeam MSC uplink. This improvement can reduce the computational complexity and achieve much lower BER.展开更多
In this paper, a novel soft reliability-based iterative majority-logic decoding algorithm with uniform quantization is proposed for regularly structured low density parity-check(LDPC) codes. A weighted measure is intr...In this paper, a novel soft reliability-based iterative majority-logic decoding algorithm with uniform quantization is proposed for regularly structured low density parity-check(LDPC) codes. A weighted measure is introduced for each check-sum of the parity-check matrix and a scaling factor is used to weaken the overestimation of extrinsic information. Furthermore, the updating process of the reliability measure takes advantage of turbo-like iterative decoding strategy. The main computational complexity of the proposed algorithm only includes logical and integer operations with the bit uniform quantization criterion. Simulation results show that the novel decoding algorithm can achieve excellent error-correction performance and a fast decoding convergence speed.展开更多
基金supported by the National Natural Science Foundation of China under Grants 61320106003 and 61401095the Civil Aerospace Technologies Research Project under Grant D010109The Fundamental Research Funds for the Central Universities under Grant YZZ17009
文摘The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receiver, which exchanges soft extrinsic information between a soft-in soft-out(SISO) detector and an SISO decoder in an iterative fashion, is an efficient method to reduce the uplink inter-beam-interference(IBI),and so the receiving bit error rate(BER).We propose to replace the linear SISO detector of traditional dual-turbo iterative detection and decoding with the AMP detector for the low-density parity-check(LDPC) coded multibeam MSC uplink. This improvement can reduce the computational complexity and achieve much lower BER.
基金supported by the National Natural Science Foundation of China(Nos.61472464,61671091 and 61471075)the Natural Science Foundation of Chongqing Science and Technology Commission(No.cstc2015jcyj A0554)+1 种基金the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.J2013-46)the Undergraduate Science Research Training Project for Chongqing University of Posts and Telecommunications(No.A2016-61)
文摘In this paper, a novel soft reliability-based iterative majority-logic decoding algorithm with uniform quantization is proposed for regularly structured low density parity-check(LDPC) codes. A weighted measure is introduced for each check-sum of the parity-check matrix and a scaling factor is used to weaken the overestimation of extrinsic information. Furthermore, the updating process of the reliability measure takes advantage of turbo-like iterative decoding strategy. The main computational complexity of the proposed algorithm only includes logical and integer operations with the bit uniform quantization criterion. Simulation results show that the novel decoding algorithm can achieve excellent error-correction performance and a fast decoding convergence speed.