Two modified BP algorithms related to vertical and horizontal processes are proposed to accelerate iterative low-density parity- check (LDPC) decoding over an additive white Gaussian noise (AWGN) channel, where th...Two modified BP algorithms related to vertical and horizontal processes are proposed to accelerate iterative low-density parity- check (LDPC) decoding over an additive white Gaussian noise (AWGN) channel, where the newly updated extrinsic information is immediately used in the current decoding round. Theoretical analysis and simulation results demonstrate that both the modified approaches provide significant performance improvements over the traditional BP algorithm with almost no additional decoding complexity. The proposed algorithm with modified horizontal process offers even better performance than another algorithm with the modified horizontal process. The two modified BP algorithms are very promising in practical communications since both can achieve an excellent trade-off between the performance and decoding complexity.展开更多
An efficient LDPC-coded multi-relay cooperation architecture is proposed based on virtual vertical Bell Labs layered space-time (V-BLAST) processing for uplink communication, where minimum-mean-square-error (MMSE)...An efficient LDPC-coded multi-relay cooperation architecture is proposed based on virtual vertical Bell Labs layered space-time (V-BLAST) processing for uplink communication, where minimum-mean-square-error (MMSE) and BP-based joint iterative decoding based on the introduced muhi-layer Tanner graph are effectively de- signed to detect and decode the corrupted received sequence at the destination. By introducing V-BLAST transmis- sion to the coded multi-relay cooperation, relays send their streams of symbols simultaneously, which increases the data rate and significantly reduces the transmission delay. The theoretical analysis and numerical results show that the new LDPC coded cooperation scheme outperforms the coded non-cooperation under the same code rate, and it also achieves a good trade-off among the performance, signal delay, and the encoding complexity associated with the number of relays. The performance gain can be credited to the proposed V-BLAST processing architecture and BP-based joint iterative decoding by the introduced multi-layer Tanner graph at a receiver-side.展开更多
基金National Mobile Communication Research Laboratory,Southeast University(No.W200704),ChinaNatural Science foundation of Jiangsu Province (No.BK2006188),ChinaQuebec-China Joint Research Foundation by McGill University,Montreal,Quebec,Canada
文摘Two modified BP algorithms related to vertical and horizontal processes are proposed to accelerate iterative low-density parity- check (LDPC) decoding over an additive white Gaussian noise (AWGN) channel, where the newly updated extrinsic information is immediately used in the current decoding round. Theoretical analysis and simulation results demonstrate that both the modified approaches provide significant performance improvements over the traditional BP algorithm with almost no additional decoding complexity. The proposed algorithm with modified horizontal process offers even better performance than another algorithm with the modified horizontal process. The two modified BP algorithms are very promising in practical communications since both can achieve an excellent trade-off between the performance and decoding complexity.
基金Supported by the Science and Technology on Avionics Integration Laboratory and National Aeronautical Science Foundation of China(20105552)
文摘An efficient LDPC-coded multi-relay cooperation architecture is proposed based on virtual vertical Bell Labs layered space-time (V-BLAST) processing for uplink communication, where minimum-mean-square-error (MMSE) and BP-based joint iterative decoding based on the introduced muhi-layer Tanner graph are effectively de- signed to detect and decode the corrupted received sequence at the destination. By introducing V-BLAST transmis- sion to the coded multi-relay cooperation, relays send their streams of symbols simultaneously, which increases the data rate and significantly reduces the transmission delay. The theoretical analysis and numerical results show that the new LDPC coded cooperation scheme outperforms the coded non-cooperation under the same code rate, and it also achieves a good trade-off among the performance, signal delay, and the encoding complexity associated with the number of relays. The performance gain can be credited to the proposed V-BLAST processing architecture and BP-based joint iterative decoding by the introduced multi-layer Tanner graph at a receiver-side.