期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Survey of Massive MIMO Channel Measurements and Models
1
作者 ZHANG Jianhua WANG Chao +1 位作者 WU Zhongyuan ZHANG Weite 《ZTE Communications》 2017年第1期14-22,共9页
Compared with conventional multiple-input multiple-output(MIMO),massive MIMO system with tens or even hundreds of antennas is able to give better performance in capacity and spectral efficiency,which is a promising te... Compared with conventional multiple-input multiple-output(MIMO),massive MIMO system with tens or even hundreds of antennas is able to give better performance in capacity and spectral efficiency,which is a promising technology for 5G.Considering this,massive MIMO has become a hot research topic all over the world.In this paper,the channel measurements and models of massive MIMO in recent years are summarized.Besides,the related 256 antenna elements with 200 MHz bandwidth at 3.5 GHz proposed by our team,the verification of rationality of the measurement method,and the spatial evolution of clusters in mobile scenario are provided. 展开更多
关键词 massive MIMO channel measurement channel model virtual measurement CLUSTER
下载PDF
Kinematic calibration method with high measurement efficiency and robust identification for hybrid machine tools
2
作者 Liping WANG Mengyu LI +2 位作者 Guang YU Weitao LI Xiangyu KONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期468-482,共15页
Geometric error is the main factor affecting the machining accuracy of hybrid machine tools.Kinematic calibration is an effective way to improve the geometric accuracy of hybrid machine tools.The necessity to measure ... Geometric error is the main factor affecting the machining accuracy of hybrid machine tools.Kinematic calibration is an effective way to improve the geometric accuracy of hybrid machine tools.The necessity to measure both position and orientation at each pose,as well as the instability of identification in case of incomplete measurements,severely affects the application of traditional calibration methods.In this study,a kinematic calibration method with high measurement efficiency and robust identification is proposed to improve the kinematic accuracy of a five-axis hybrid machine tool.First,the configuration is introduced,and an error model is derived.Further,by investigating the mechanism error characteristics,a measurement scheme that only requires tool centre point position error measurement and one alignment operation is proposed.Subsequently,by analysing the effects of unmeasured degrees of freedom(DOFs)on other DOFs,an improved nonlinear least squares method based on virtual measurement values is proposed to achieve stable parameter identification in case of incomplete measurement,without introducing additional parameters.Finally,the proposed calibration method is verified through simulations and experiments.The proposed method can efficiently accomplish the kinematic calibration of the hybrid machine tool.The accuracy of the hybrid machine tool is significantly improved after calibration,satisfying actual aerospace machining requirements. 展开更多
关键词 Hybrid machine tool CALIBRATION Measurement scheme Improved nonlinear least squares method virtual measurement values
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部