期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of hydraulic fracture propagation in tight oil reservoirs by volumetric fracturing 被引量:6
1
作者 Shi-Cheng Zhang Xin Lei +1 位作者 Yu-Shi Zhou Guo-Qing Xu 《Petroleum Science》 SCIE CAS CSCD 2015年第4期674-682,共9页
Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system whi... Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system which can enhance the stimulated reservoir volume. By using the combined finite and discrete element method, a model was built to describe hydraulic fracture propagation in tight oil reservoirs. Considering the effect of horizontal stress difference, number and spacing of perforation clus- ters, injection rate, and the density of natural fractures on fracture propagation, we used this model to simulate the fracture propagation in a tight formation of a certain oil- field. Simulation results show that when the horizontal stress difference is lower than 5 MPa, it is beneficial to form a complex fracture network system. If the horizontal stress difference is higher than 6 MPa, it is easy to form a planar fracture system; with high horizontal stress differ- ence, increasing the number of perforation clusters is beneficial to open and connect more natural fractures, and to improve the complexity of fracture network and the stimulated reservoir volume (SRV). As the injection rate increases, the effect of volumetric fracturing may be improved; the density of natural fractures may only have a great influence on the effect of volume stimulation in a low horizontal stress difference. 展开更多
关键词 Tight oil reservoir volumetric fracturingfracture propagation Horizontal stress difference Stimulated reservoir volume
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部