Lift cycle assessment(LCA)methodology was applied to evaluating and comparing two waste acid disposal processes in zinc smelting.The results indicate that environmental impacts of gas−liquid vulcanization technologies...Lift cycle assessment(LCA)methodology was applied to evaluating and comparing two waste acid disposal processes in zinc smelting.The results indicate that environmental impacts of gas−liquid vulcanization technologies are human toxicity,abiotic depletion potential,and global warming risk,which are mainly caused in neutralizing−evaporating−crystallization unit and electrodialysis unit.As for traditional lime neutralization method,vulcanization unit is the main factor.In this regard,the total environmental impact of traditional lime neutralization method is much higher than that of gas−liquid vulcanization technologies.Furthermore,the sensitive analysis shows that electricity and sodium sulfide(60%)are sensitive factors in two waste acid disposal technologies.In addition,the total cost of disposing a functional unit waste acid in traditional lime neutralization process is nearly 27 times that of the gas−liquid vulcanization waste acid disposal technologies.展开更多
Recovery of scandium from titanium white waste acid is an essential source of scandium.Simple and economical production of high purity scandium remains a challenge.A new extractant,N,N,N’,N’-tetracyclohexyl-diglycol...Recovery of scandium from titanium white waste acid is an essential source of scandium.Simple and economical production of high purity scandium remains a challenge.A new extractant,N,N,N’,N’-tetracyclohexyl-diglycolamide(TCHDGA),was synthesized,and the separation performance of scandium from impurity metal ions(Ti,Mn,Ba,Fe,Al and Mg)was investigated,The effects of mixing time,acid concentration and temperature on the scandium extraction were considered.The extraction mechanism was studied by infrared spectroscopy and the Equimole Series Method.Under optimized conditions,the extractant shows a strong affinity to scandium in the nitric acid medium and high extraction separation factors between scandium and these impurity metal ions,A process for the purification of scandium was established.The crude product obtained from titanium white waste acid,95%purity scandium oxide,can be purified to 99.99%after only one step of extraction,scrubbing,and stripping:This technology is economical and straightforward and can realize the high-value recovery of scandium in the titanium white waste acid.展开更多
Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD...Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD and controlling heavy metals contamination from coal waste, the column leaching tests were conducted. The results come from experiment data analyses show that the loess can effectively immobilize cadmium, copper, iron, lead and zinc in AMD from coal waste, increase pH value, and decrease Eh, EC, and 8024- concentrations of AMD from coal waste. The oxidation of sulfide in coal waste is prevented by addition of the loess, which favors the generation and adsorption of the alkalinity, the decrease of the population of Thiobacillusferrooxidans, the heavy metals immobilization by precipitation of sulfide and carbonate through biological sul- fate reduction inside the column, and the halt of the oxidation process of sulfide through iron coating on the surface of sulfide in coal waste. The loess can effectively prevent AMD and heavy metals contamination from coal waste in in-situ treatment systems.展开更多
Preparation of biodiesel from waste oils containing 72% of free fatty acids catalyzed by a novel Br?nsted acidic ionic liquid 1-sulfobutyl-3-methylimidazolium hydrosulfate([BHSO_3MIM][HSO_4]) was systematically invest...Preparation of biodiesel from waste oils containing 72% of free fatty acids catalyzed by a novel Br?nsted acidic ionic liquid 1-sulfobutyl-3-methylimidazolium hydrosulfate([BHSO_3MIM][HSO_4]) was systematically investigated.The optimum molar ratio of methanol to waste oils,catalyst amount,reaction temperature and reaction time were 8/1,10%(based on the mass of waste oils),140°C and 6 h,respectively,under which the obtained yield of biodiesel reached 94.9%.Also,[BHSO_3MIM][HSO_4] as a catalyst still retained around 97% of its original catalytic activity after successive re-use of 5 batches(6 h per batch),showing the excellent operational stability.Moreover,the acidic IL [BHSO_3MIM][HSO_4] was able to ef ficiently catalyze conversions of waste oils with different amounts of FFAs(free fatty acids) into biodiesel,and showed tremendous application potential.Therefore,an ef ficient and environmentally friendly catalyst is provided for the synthesis of biodiesel from waste oils with high acid value.展开更多
This recycling of printed circuit board (TCI) for the production of metals, given the environmental degradation that can cause toxic substances of these, is the reuse of valuable materials recovered from the TCI, this...This recycling of printed circuit board (TCI) for the production of metals, given the environmental degradation that can cause toxic substances of these, is the reuse of valuable materials recovered from the TCI, this being an economic engine that promotes the recycling of this waste. This paper presents a methodology for evaluating the reaction kinetics and leaching of metals that form the metal substrate, which have environmental and energy advantages, so the generation of new recovery techniques metals from the TCI low environmental and energy impact is increasingly necessary, for it is essential to establish the parameters affecting the reaction rate and identify design alternatives to determine whether or not sustainable, economically viable and that does not pollute. The method adopted was a leaching acid samples, where the full factorial method employed two experimental levels to evaluate the influence of: leaching time, temperature of the aqueous leach solution, reaction kinetics and solid/liquid, on the percentage of metal extraction. Subsequently, the metals are obtained by calcining and smelting the resulting salts by addition of acid liquor.展开更多
This paper presents a process development and design of chlorine dioxide production based on hydrogen peroxide. The process is characterized by cleaner production, high efficiency, and waste minimization. Optimization...This paper presents a process development and design of chlorine dioxide production based on hydrogen peroxide. The process is characterized by cleaner production, high efficiency, and waste minimization. Optimization of process conditions, selection of equipment, and experiment of recycle of waste acid are carried out. The process design is realized in consideration of several aspects such as operation, material, equipment design and safety. An industrialized process flowsheet is developed according to experiment. A pilot testing is carried out to confirm the lab results. Process design of chlorine dioxide production based on hydrogen peroxide is realized.展开更多
As an important intermediate product, short-chain fatty acids(SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion...As an important intermediate product, short-chain fatty acids(SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion process. In order to obtain more SCFA and methane,most studies in literatures were centered on enhancing the hydrolysis of sludge anaerobic digestion which was proved as un-efficient. Though the alkaline pretreatment in our previous study increased both the hydrolysis and acidification processes, it had a vast chemical cost which was considered uneconomical. In this paper, a low energy consumption pretreatment method, i.e. enhanced the whole three stages of the anaerobic fermentation processes at the same time, was reported, by which hydrolysis and acidification were both enhanced, and the SCFA and methane generation can be significantly improved with a small quantity of chemical input. Firstly, the effect of different pretreated temperatures and pretreatment time on sludge hydrolyzation was compared. It was found that sludge pretreated at 100°C for 60 min can achieve the maximal hydrolyzation. Further, effects of different initial p Hs on acidification of the thermal pretreated sludge were investigated and the highest SCFA was observed at initial p H 9.0with fermentation time of 6 d, the production of which was 348.63 mg COD/g VSS(6.8 times higher than the blank test) and the acetic acid was dominant acid. Then, the mechanisms for this new pretreatment significantly improving SCFA production were discussed. Finally,the effect of this low energy consumption pretreatment on methane generation was investigated.展开更多
The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).Th...The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).The kinetics of Cr(Ⅵ) reductions depended strongly on pH.The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(Ⅵ) than HAc,but was also more efficient than HAs from soil and peat.The reduction capability of HAs depends on the type of functional groups (i.e.,thiols and phenols) present,rather than the free radicals.HAw was more efficient at reducing Cr(Ⅵ) than HAc because more reactive phenols were present,i.e.,methoxy-and methyl-phenols.展开更多
Zn containing waste water from a viscose staple fiber plant has been treated using the emulsion liquid membrane (ELM) process since 1995. The flow sheet and operating parameters of the ELM process are introduced. A...Zn containing waste water from a viscose staple fiber plant has been treated using the emulsion liquid membrane (ELM) process since 1995. The flow sheet and operating parameters of the ELM process are introduced. After adjusting the membrane composition, changing the emulsion phase ratio, and adding a scrubbing step, the ELM process operated normally without trouble for emulsion splitting and mass transport throughput. The splitter voltage was decreased to 3.55 kV. The zinc concentration of treated waste water was lowered to less than 10 mg·L -1 . More than 95% of the zinc was recovered and reused.展开更多
In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane i...In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane industry were treated with acid followed by reduction with metallic iron powder. The obtained copper powder was then subjected to controlled oxidation in air at different temperatures, followed by ball milling. The orthogonal array approach was applied to optimize this process, and the stirring speed and pH were found to significantly affect the leaching ratio and copper yield, respectively. When used for the Rochow process, the optimized ternary Cu-Cu2O-CuO catalyst greatly enhanced the dimethyldichlorosilane selectivity and Si conversion compared with Cu-Cu2O-CuO catalysts prepared without ball milling, bare Cu catalysts, and Cu-Cu2O-CuO catalysts with different compositions. This could be attributed to their small particle size and the strong synergistic effect among the multiple components in the catalyst with the optimized composition.展开更多
A waste paper sludge-derived heterogeneous catalyst(WPS-Fe-350) was synthesized via a facile method and successfully applied for the degradation of Orange Ⅱ in the presence of oxalic acid under the illumination of ...A waste paper sludge-derived heterogeneous catalyst(WPS-Fe-350) was synthesized via a facile method and successfully applied for the degradation of Orange Ⅱ in the presence of oxalic acid under the illumination of ultraviolet light emitting diode(UV-LED) Powder X-ray diffraction,Fourier-transform infrared spectroscopy,scanning electronic microscopy and N2 sorption isotherm analysis indicated the formation of α-Fe2O3 in the mesoporous nanocomposite.The degradation test showed that WPS-Fe-350 exhibited rapid Orange Ⅱ(OⅡ) degradation and mineralization in the presence of oxalic acid under the illumination of UV-LED.The effects of p H,oxalic acid concentration and dosage of the catalyst on the degradation of OⅡ were evaluated,respectively.Under the optimal conditions(1 g/L catalyst dosage,2 mmol/L oxalic acid and p H 3.0),the degradation percentage for a solution containing 30 mg/L OⅡ reached 83.4% under illumination by UV-LED for 80 min.Moreover,five cyclic tests for OⅡ degradation suggested that WPS-Fe-350 exhibited excellent stability of catalytic activity.Hence,this study provides an alternative environmentally friendly way to reuse waste paper sludge and an effective and economically viable method for degradation of azo dyes and other refractory organic pollutants in water.展开更多
This study investigated the degradation and production of volatile fatty acids(VFAs)in the acidogenic phase reactor of a two-phase anaerobic system.20 mmol/L bromoethanesulfonic acid(BESA)was used to inhibit acido...This study investigated the degradation and production of volatile fatty acids(VFAs)in the acidogenic phase reactor of a two-phase anaerobic system.20 mmol/L bromoethanesulfonic acid(BESA)was used to inhibit acidogenic methanogens(which were present in the acidogenic phase reactor)from degrading VFAs.The impact of undissociated volatile fatty acids(un VFAs)on"net"VFAs production in the acidogenic phase reactor was then evaluated,with the exclusion of concurrent VFAs degradation."Net"VFAs production from glucose degradation was partially inhibited at high un VFAs concentrations,with 59%,37% and 60% reduction in production rates at 2190 mg chemical oxygen demand(COD)/L undissociated acetic acid(un HAc),2130 mg COD/L undissociated propionic acid(un HPr)and 2280 mg COD/L undissociated n-butyric acid(un HBu),respectively.The profile of VFAs produced further indicated that while an un VFA can primarily affect its own formation,there were also un VFAs that affected the formation of other VFAs.展开更多
Low-cost activated carbons(ACs) were prepared from four kinds of solid wastes:petroleum coke,Enteromorpha prolifera,lignin from papermaking black liquid and hair,by pyrophosphoric acid(H_4P_2O_7) activation.Therm...Low-cost activated carbons(ACs) were prepared from four kinds of solid wastes:petroleum coke,Enteromorpha prolifera,lignin from papermaking black liquid and hair,by pyrophosphoric acid(H_4P_2O_7) activation.Thermo-gravimetric analysis of the pyrolysis of H_4P_2O_7-precursor mixtures implied that H_4P_2O_7 had different influences on the pyrolysis behavior of the four raw materials.N_2 adsorption/desorption isotherms,scanning electron microscopy,Fourier transform infrared spectroscopy and adsorption capacities for dyes were used to characterize the prepared activated carbons.AC derived from E.prolifera exhibited the highest surface area(1094 m^2/g) and maximum monolayer adsorption capacity for malachite green(1250 mg/g).Kinetic studies showed that the experimental data were in agreement with the pseudo-second-order model.The adsorption isotherms were well described by the Langmuir isotherm model,indicating the adsorption of dye onto the ACs proceeded by monolayers.展开更多
基金the National Key R&D Program of China(Nos.2018YFC1903304,2019YFC1907405)National Natural Science Foundation of China(No.51904354).
文摘Lift cycle assessment(LCA)methodology was applied to evaluating and comparing two waste acid disposal processes in zinc smelting.The results indicate that environmental impacts of gas−liquid vulcanization technologies are human toxicity,abiotic depletion potential,and global warming risk,which are mainly caused in neutralizing−evaporating−crystallization unit and electrodialysis unit.As for traditional lime neutralization method,vulcanization unit is the main factor.In this regard,the total environmental impact of traditional lime neutralization method is much higher than that of gas−liquid vulcanization technologies.Furthermore,the sensitive analysis shows that electricity and sodium sulfide(60%)are sensitive factors in two waste acid disposal technologies.In addition,the total cost of disposing a functional unit waste acid in traditional lime neutralization process is nearly 27 times that of the gas−liquid vulcanization waste acid disposal technologies.
基金supported by the National Natural Science Foundation of China(21876062)。
文摘Recovery of scandium from titanium white waste acid is an essential source of scandium.Simple and economical production of high purity scandium remains a challenge.A new extractant,N,N,N’,N’-tetracyclohexyl-diglycolamide(TCHDGA),was synthesized,and the separation performance of scandium from impurity metal ions(Ti,Mn,Ba,Fe,Al and Mg)was investigated,The effects of mixing time,acid concentration and temperature on the scandium extraction were considered.The extraction mechanism was studied by infrared spectroscopy and the Equimole Series Method.Under optimized conditions,the extractant shows a strong affinity to scandium in the nitric acid medium and high extraction separation factors between scandium and these impurity metal ions,A process for the purification of scandium was established.The crude product obtained from titanium white waste acid,95%purity scandium oxide,can be purified to 99.99%after only one step of extraction,scrubbing,and stripping:This technology is economical and straightforward and can realize the high-value recovery of scandium in the titanium white waste acid.
基金Supported by the-National Natural Science Foundation of China (30671448) the Science and Technology Pillar Program of Hebei Province 12220802D)
文摘Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD and controlling heavy metals contamination from coal waste, the column leaching tests were conducted. The results come from experiment data analyses show that the loess can effectively immobilize cadmium, copper, iron, lead and zinc in AMD from coal waste, increase pH value, and decrease Eh, EC, and 8024- concentrations of AMD from coal waste. The oxidation of sulfide in coal waste is prevented by addition of the loess, which favors the generation and adsorption of the alkalinity, the decrease of the population of Thiobacillusferrooxidans, the heavy metals immobilization by precipitation of sulfide and carbonate through biological sul- fate reduction inside the column, and the halt of the oxidation process of sulfide through iron coating on the surface of sulfide in coal waste. The loess can effectively prevent AMD and heavy metals contamination from coal waste in in-situ treatment systems.
基金Supported by the National Natural Science Foundation of China(21676104,21336002,21376096)the Open Funding Project of the State Key Laboratory of Bioreactor Engineeringthe Program of State Key Laboratory of Pulp and Paper Engineering(2017ZD05)
文摘Preparation of biodiesel from waste oils containing 72% of free fatty acids catalyzed by a novel Br?nsted acidic ionic liquid 1-sulfobutyl-3-methylimidazolium hydrosulfate([BHSO_3MIM][HSO_4]) was systematically investigated.The optimum molar ratio of methanol to waste oils,catalyst amount,reaction temperature and reaction time were 8/1,10%(based on the mass of waste oils),140°C and 6 h,respectively,under which the obtained yield of biodiesel reached 94.9%.Also,[BHSO_3MIM][HSO_4] as a catalyst still retained around 97% of its original catalytic activity after successive re-use of 5 batches(6 h per batch),showing the excellent operational stability.Moreover,the acidic IL [BHSO_3MIM][HSO_4] was able to ef ficiently catalyze conversions of waste oils with different amounts of FFAs(free fatty acids) into biodiesel,and showed tremendous application potential.Therefore,an ef ficient and environmentally friendly catalyst is provided for the synthesis of biodiesel from waste oils with high acid value.
文摘This recycling of printed circuit board (TCI) for the production of metals, given the environmental degradation that can cause toxic substances of these, is the reuse of valuable materials recovered from the TCI, this being an economic engine that promotes the recycling of this waste. This paper presents a methodology for evaluating the reaction kinetics and leaching of metals that form the metal substrate, which have environmental and energy advantages, so the generation of new recovery techniques metals from the TCI low environmental and energy impact is increasingly necessary, for it is essential to establish the parameters affecting the reaction rate and identify design alternatives to determine whether or not sustainable, economically viable and that does not pollute. The method adopted was a leaching acid samples, where the full factorial method employed two experimental levels to evaluate the influence of: leaching time, temperature of the aqueous leach solution, reaction kinetics and solid/liquid, on the percentage of metal extraction. Subsequently, the metals are obtained by calcining and smelting the resulting salts by addition of acid liquor.
基金Supported by the Excellent Young Scientist Award of NSFC (20225620) the National Natural Science Foundation of China (No. 20376025) the Ministry of Education of China, the Bureau of Education of Guangdong Province.
文摘This paper presents a process development and design of chlorine dioxide production based on hydrogen peroxide. The process is characterized by cleaner production, high efficiency, and waste minimization. Optimization of process conditions, selection of equipment, and experiment of recycle of waste acid are carried out. The process design is realized in consideration of several aspects such as operation, material, equipment design and safety. An industrialized process flowsheet is developed according to experiment. A pilot testing is carried out to confirm the lab results. Process design of chlorine dioxide production based on hydrogen peroxide is realized.
基金supported by the National Science Foundation of China (Grant no. 51408419)the National Key Technology Research and Development Program of China (Grant nos. 2014BAL02B02-03 and 2014BAC29B01)the Key Program for International S&T Cooperation Projects of China (Grant no. 2012DFG91380)
文摘As an important intermediate product, short-chain fatty acids(SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion process. In order to obtain more SCFA and methane,most studies in literatures were centered on enhancing the hydrolysis of sludge anaerobic digestion which was proved as un-efficient. Though the alkaline pretreatment in our previous study increased both the hydrolysis and acidification processes, it had a vast chemical cost which was considered uneconomical. In this paper, a low energy consumption pretreatment method, i.e. enhanced the whole three stages of the anaerobic fermentation processes at the same time, was reported, by which hydrolysis and acidification were both enhanced, and the SCFA and methane generation can be significantly improved with a small quantity of chemical input. Firstly, the effect of different pretreated temperatures and pretreatment time on sludge hydrolyzation was compared. It was found that sludge pretreated at 100°C for 60 min can achieve the maximal hydrolyzation. Further, effects of different initial p Hs on acidification of the thermal pretreated sludge were investigated and the highest SCFA was observed at initial p H 9.0with fermentation time of 6 d, the production of which was 348.63 mg COD/g VSS(6.8 times higher than the blank test) and the acetic acid was dominant acid. Then, the mechanisms for this new pretreatment significantly improving SCFA production were discussed. Finally,the effect of this low energy consumption pretreatment on methane generation was investigated.
文摘The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).The kinetics of Cr(Ⅵ) reductions depended strongly on pH.The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(Ⅵ) than HAc,but was also more efficient than HAs from soil and peat.The reduction capability of HAs depends on the type of functional groups (i.e.,thiols and phenols) present,rather than the free radicals.HAw was more efficient at reducing Cr(Ⅵ) than HAc because more reactive phenols were present,i.e.,methoxy-and methyl-phenols.
文摘Zn containing waste water from a viscose staple fiber plant has been treated using the emulsion liquid membrane (ELM) process since 1995. The flow sheet and operating parameters of the ELM process are introduced. After adjusting the membrane composition, changing the emulsion phase ratio, and adding a scrubbing step, the ELM process operated normally without trouble for emulsion splitting and mass transport throughput. The splitter voltage was decreased to 3.55 kV. The zinc concentration of treated waste water was lowered to less than 10 mg·L -1 . More than 95% of the zinc was recovered and reused.
基金The work was supported by the National Natural Science Foundation of China (grant number 21506224). Z.Z. is grateful for support from the Institute of Chemical and Engineering Sciences.
文摘In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane industry were treated with acid followed by reduction with metallic iron powder. The obtained copper powder was then subjected to controlled oxidation in air at different temperatures, followed by ball milling. The orthogonal array approach was applied to optimize this process, and the stirring speed and pH were found to significantly affect the leaching ratio and copper yield, respectively. When used for the Rochow process, the optimized ternary Cu-Cu2O-CuO catalyst greatly enhanced the dimethyldichlorosilane selectivity and Si conversion compared with Cu-Cu2O-CuO catalysts prepared without ball milling, bare Cu catalysts, and Cu-Cu2O-CuO catalysts with different compositions. This could be attributed to their small particle size and the strong synergistic effect among the multiple components in the catalyst with the optimized composition.
基金supported by the Major Science and Technology Projects Focus on Social Development Projects of Zhejiang Province(Nos.2014C03002 and 2012C03004-1)
文摘A waste paper sludge-derived heterogeneous catalyst(WPS-Fe-350) was synthesized via a facile method and successfully applied for the degradation of Orange Ⅱ in the presence of oxalic acid under the illumination of ultraviolet light emitting diode(UV-LED) Powder X-ray diffraction,Fourier-transform infrared spectroscopy,scanning electronic microscopy and N2 sorption isotherm analysis indicated the formation of α-Fe2O3 in the mesoporous nanocomposite.The degradation test showed that WPS-Fe-350 exhibited rapid Orange Ⅱ(OⅡ) degradation and mineralization in the presence of oxalic acid under the illumination of UV-LED.The effects of p H,oxalic acid concentration and dosage of the catalyst on the degradation of OⅡ were evaluated,respectively.Under the optimal conditions(1 g/L catalyst dosage,2 mmol/L oxalic acid and p H 3.0),the degradation percentage for a solution containing 30 mg/L OⅡ reached 83.4% under illumination by UV-LED for 80 min.Moreover,five cyclic tests for OⅡ degradation suggested that WPS-Fe-350 exhibited excellent stability of catalytic activity.Hence,this study provides an alternative environmentally friendly way to reuse waste paper sludge and an effective and economically viable method for degradation of azo dyes and other refractory organic pollutants in water.
基金supported and administered by the Singapore National Research Foundation(NRF-CRP5-2009-2)
文摘This study investigated the degradation and production of volatile fatty acids(VFAs)in the acidogenic phase reactor of a two-phase anaerobic system.20 mmol/L bromoethanesulfonic acid(BESA)was used to inhibit acidogenic methanogens(which were present in the acidogenic phase reactor)from degrading VFAs.The impact of undissociated volatile fatty acids(un VFAs)on"net"VFAs production in the acidogenic phase reactor was then evaluated,with the exclusion of concurrent VFAs degradation."Net"VFAs production from glucose degradation was partially inhibited at high un VFAs concentrations,with 59%,37% and 60% reduction in production rates at 2190 mg chemical oxygen demand(COD)/L undissociated acetic acid(un HAc),2130 mg COD/L undissociated propionic acid(un HPr)and 2280 mg COD/L undissociated n-butyric acid(un HBu),respectively.The profile of VFAs produced further indicated that while an un VFA can primarily affect its own formation,there were also un VFAs that affected the formation of other VFAs.
文摘Low-cost activated carbons(ACs) were prepared from four kinds of solid wastes:petroleum coke,Enteromorpha prolifera,lignin from papermaking black liquid and hair,by pyrophosphoric acid(H_4P_2O_7) activation.Thermo-gravimetric analysis of the pyrolysis of H_4P_2O_7-precursor mixtures implied that H_4P_2O_7 had different influences on the pyrolysis behavior of the four raw materials.N_2 adsorption/desorption isotherms,scanning electron microscopy,Fourier transform infrared spectroscopy and adsorption capacities for dyes were used to characterize the prepared activated carbons.AC derived from E.prolifera exhibited the highest surface area(1094 m^2/g) and maximum monolayer adsorption capacity for malachite green(1250 mg/g).Kinetic studies showed that the experimental data were in agreement with the pseudo-second-order model.The adsorption isotherms were well described by the Langmuir isotherm model,indicating the adsorption of dye onto the ACs proceeded by monolayers.