Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de...Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.展开更多
Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forec...Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells.展开更多
Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (includi...Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (including topography, geology, land use, and etc.), rainfall and debris flow data. A system of regional prediction of impending debris flow was set up on ArcGIS 9.0 platform according to the model. The system used forecast precipitation data of Doppler weather radar and observational precipitation data as its input data. It could provide a prediction about the possibility of debris flow one to three hours before it happened, and was put into use in Liangshan Meteorological Observatory in Sichuan province in the monsoon of 2006.展开更多
Wind shear reflects that the wind field is not uniform, which is one of the primary factors which make the retrieval of the wind field difficult. Based on volume velocity process(VVP) wind field retrieval technique, t...Wind shear reflects that the wind field is not uniform, which is one of the primary factors which make the retrieval of the wind field difficult. Based on volume velocity process(VVP) wind field retrieval technique, the intensity of wind shear is identified in this paper. After analyzing the traditional techniques that rely on the difference of radial velocity to identify wind shear, a fixed difference among radial velocities that may cause false identification in a uniform wind field was found. Because of the non-uniformity in wind shear areas, the difference of retrieved results between surrounding analysis volumes can be used as a measurement to show how strong the wind shear is. According to the analysis of a severe convective weather process that occurred in Guangzhou, it can be found that the areas of wind shear appeared with the strength significantly larger than in other regions and the magnitude generally larger than4.5 m/(s·km). Besides, by comparing the variation of wind shear strength during the convection, it can be found that new cells will be more likely to generate when the strength is above 3.0 m/(s·km). Therefore, the analysis of strong wind shear's movement and development is helpful to forecasting severe convections.展开更多
A novel weather radar system with distributed phased-array front-ends was developed. The specifications and preliminary data synthesis of this system are presented, which comprises one back-end and three or more front...A novel weather radar system with distributed phased-array front-ends was developed. The specifications and preliminary data synthesis of this system are presented, which comprises one back-end and three or more front-ends. Each front-end, which utilizes a phased-array digital beamforming technology, sequentially transmits four 22.5°-width beams to cover the 0°–90° elevational scan within about 0.05 s. The azimuthal detection is completed by one mechanical scan of0°–360° azimuths within about 12 s volume-scan update time. In the case of three front-ends, they are deployed according to an acute triangle to form a fine detection area(FDA). Because of the triangular deployment of multiple phased-array front-ends and a unique synchronized azimuthal scanning(SAS) rule, this new radar system is named Array Weather Radar(AWR). The back-end controls the front-ends to scan strictly in accordance with the SAS rule that assures the data time differences(DTD) among the three front-ends are less than 2 s for the same detection point in the FDA. The SAS can maintain DTD < 2 s for an expanded seven-front-end AWR. With the smallest DTD, gridded wind fields are derived from AWR data, by sampling of the interpolated grid, onto a rectangular grid of 100 m ×100 m ×100 m at a 12 s temporal resolution in the FDA. The first X-band single-polarized three-front-end AWR was deployed in field experiments in 2018 at Huanghua International Airport, China. Having completed the data synthesis and processing, the preliminary observation results of the first AWR are described herein.展开更多
A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of e...A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of exhaustion, and then the main reason was determined using exclusive method. That is, the fault was closely related to the signal transmission channel from the antenna mount to servo system in RDA cabinet. After ex- amining questionable nodes in the transmission channels of the alarm signal, we found that the false alarm fault might result from the interference of a burr in the temperature sensing circuit of the elevation motor. In actual operation, a filter capacitor was connected with the corresponding pin in the upper optical board to screen the interference of a burr, thereby successfully eliminating the false alarm fault in antenna-servo system of the CIN- RAD/SA radar of Shanwei.展开更多
As weather radar stations require headroom environment to operate,they were mostly built on highlands which are usually unattended.The mains supply is relatively poor,and the risk of radar stoppages due to power outag...As weather radar stations require headroom environment to operate,they were mostly built on highlands which are usually unattended.The mains supply is relatively poor,and the risk of radar stoppages due to power outage is therefore ever-present.As such,the radar construction program is used to build a complementary security video monitoring system.By collecting monitoring images of the regulated power supply in real-time from power supply auto transfer systems in distribution rooms and radar transceiver rooms,using Spearman’s rank correlation coefficient to analyse pixel variation trends,and supplementing statistical analysis of pixel characteristics difference to eliminate misjudgments resulting from low image contrast in special scenarios,a software can be developed through C#.It has the function of automatically monitoring mains supply and alerting staff on duty to handle the power outage in a timely manner via text message so that any potential risk is neutralised before it can cause damage.This monitoring and auto-alerting approach is generally applicable to unattended rooms with large amounts of electronical equipment.展开更多
Based on updating of new generation weather radar software,compilation system of new generation weather radar case data could automatically back up data and compile radar case.Using C language and VC++6.0 development ...Based on updating of new generation weather radar software,compilation system of new generation weather radar case data could automatically back up data and compile radar case.Using C language and VC++6.0 development technology,the software realizes the automatic sorting and saving of radar base data,radar products and radar status information on different machines every day,and automatically creates various folders and files required for compiling data.By inputting the days,date,start and end times,renaming and compression of the base data,product data and status information could be automatically completed,to realize automation,batch,process and standardization of case data compilation.Since putting into the radar business,the operation has been stable and reliable.The working efficiency of business personnel has been improved,and a large number of manpower has been saved.It can be transplanted and popularized in other new generation weather radar stations.展开更多
This work presents the climatology of the microphysics and the dynamics of weather systems in two coastal areas of São Paulo and the Espírito States at high spatial-temporal resolution as measured by two...This work presents the climatology of the microphysics and the dynamics of weather systems in two coastal areas of São Paulo and the Espírito States at high spatial-temporal resolution as measured by two dual Doppler weather radars during the summer and early fall of 2015. Averages and respective standard deviations of polarimetric variables, namely, reflectivity (Z), differential reflectivity (Z<sub>DR</sub>), differential phase (ϕ<sub>DP</sub>), specific differential phase (K<sub>DP</sub>), copolar correlation coefficient (ρ<sub>oHV</sub>), radial velocity (V<sub>r</sub>), and the spectral width (W) were obtained within a 240-km range on plan position indicator (PPI), constant altitude plan position indicator (CAPPI) and vertical cross-sections to analyze overall horizontal and vertical precipitation microphysics and mesoscale circulation of prevailing weather systems, and their peculiarities over coastal and oceanic, and urban and rural areas. Overall, raindrops tend to be larger over the Metropolitan area of São Paulo from the surface to up to 6 km altitude indicating more vigorous updrafts caused by the heat island effect and the local sea breeze. The vertical microphysical structure is remarkably distinct over the Metropolitan Area of São Paulo (MASP) where thunderstorms can reach 20-km altitude in summertime under sea breeze and heat island effects. On the other hand, there is a dominancy of smaller drop sizes though larger ones observed close to the surface by the coast of Espírito Santo and at the land-ocean interface influenced by the local low-level jet and oceanic-type CCN. Convective cells tend to be smaller associated with Easterlies and more organized with Westerlies. The results indicate distinct features on hydrometeor types and circulation characteristics under these different surface and boundary-layer conditions in close agreement with previous results in the literature.展开更多
After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve we...After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.展开更多
3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching C...3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching Cubes (MC) algorithm in the surface rendering has more excellent applicability in 3D reconstruction for the slice images;it may shorten the time to find and calculate the isosurface from raw volume data, reflect the shape structure more accurately. In this paper, we discuss a method to reconstruct the 3D weather cloud image by using the proposed Cube Weighting Interpolation (CWI) and MC algorithm. Firstly, we detail the steps of CWI, apply it to project the raw radar data into the cubes and obtain the equally spaced cloud slice images, then employ MC algorithm to draw the isosurface. Some experiments show that our method has a good effect and simple operation, which may provide an intuitive and effective reference for realizing the 3D surface reconstruction and meteorological image stereo visualization.展开更多
This paper provides a new method for designing the load of transmitters switch components on provincial radar test platform. Based on the calculation of the specific parameters related to the actual charge switch comp...This paper provides a new method for designing the load of transmitters switch components on provincial radar test platform. Based on the calculation of the specific parameters related to the actual charge switch components, the load-related data model is obtained, the simulation is carried out, and the results are consistent with the actual test results. Through the theoretical numerical analysis of the load of the charging switch components of the transmitter device in the new generation of weather radar maintenance test platform, radar maintenance personnel at all levels can deepen the thorough understanding of the CINRAD/SA transmitter and have some enlightenment and improvement on the maintenance guarantee ability of the new generation of weather radar.展开更多
New generation Doppler weather radar (NEXTRAD) has become one of the most important tools for monitoring and forecasting severe weather. It has been widely used in some developed countries. The construction of China’...New generation Doppler weather radar (NEXTRAD) has become one of the most important tools for monitoring and forecasting severe weather. It has been widely used in some developed countries. The construction of China’s NEXTRAD network has started since 1998, and this project is supported by national debt. In this paper the author addresses the development of NEXTRAD techniques, the pre\|sent situation of construction and application of NEXTRAD in China, some problems to be carefully considered in construction, and seve\|ral new fields of future radar technique developments and applications in weather monitoring.展开更多
According the work arrangements and requirements of carried satellite emergency communications, Fujian Meteorological Bureau establishes a satellite emergency communication system for radar stations to meet the needs ...According the work arrangements and requirements of carried satellite emergency communications, Fujian Meteorological Bureau establishes a satellite emergency communication system for radar stations to meet the needs of data transmission under the radar state of emergency. This paper introduces the main construction content, structure diagram, network diagram, drills and emergency communications procedures of the emergency communication system for the province’s meteorological radar satellite and provides the test emergency situation of the province’s meteorological radar-satellite data transmission. Satellite emergency communication system can basically meet the needs of emergency radar data transmission.展开更多
Doppler weather radar has important applications in measuring the intrinsic factors of cloud, rainfall and various convective weather occurrences. Among them, CINRAD/CB Doppler weather radar is based on the requiremen...Doppler weather radar has important applications in measuring the intrinsic factors of cloud, rainfall and various convective weather occurrences. Among them, CINRAD/CB Doppler weather radar is based on the requirements of the China Meteorological Administration and many units have been provided. The modulator is a critical part of the transmitter’s high voltage, where high voltage, high current, and energy conversion are concentrated. It is therefore necessary to redesign the transmitter modulator cooling system protection. This article describes the new design of hardware and software solutions. The fan is a DV5214/2N DC fan from Ebmpapst, Germany. The speed is up to 5000 rpm, the power is 18.5 W, and the single fan current is about 0.8 A. It is powered by 28 V. The protection board uses a DC/DC module to output a 5 V voltage and a 3.3 V voltage adjustment chip LM1117. The embedded web software is based on the TCP/IP protocol stack provided by MICROCHIP. After the cooling system is designed and installed in the radar station in Xi’an, China and other places, after long-term operation, the comprehensive test shows that the system runs well.展开更多
Strong convective systems and the associated heavy rainfall events can trig-ger floods and landslides with severe detrimental consequences.These events have a high spatio-temporal variability,being difficult to predic...Strong convective systems and the associated heavy rainfall events can trig-ger floods and landslides with severe detrimental consequences.These events have a high spatio-temporal variability,being difficult to predict by standard meteorological numerical models.This work proposes the M5Images method for performing the very short-term prediction(nowcasting)of heavy convective rainfall using weather radar data by means of a convolutional recurrent neural network.The recurrent part of it is a Long Short-Term Memory(LSTM)neural network.Prediction tests were performed for the city and surroundings of Campinas,located in the Southeastern Brazil.The convolutional recurrent neural network was trained using time series of rainfall rate images derived from weather radar data for a selected set of heavy rainfall events.The attained pre-diction performance was better than that given by the persistence forecasting method for different prediction times.展开更多
Based on the radar data and lightning position indicator data of strong thunderstorm weather which happened in Fuxin on July 8,2007,the relationship between the lightning activity and the radar echo was analyzed.The r...Based on the radar data and lightning position indicator data of strong thunderstorm weather which happened in Fuxin on July 8,2007,the relationship between the lightning activity and the radar echo was analyzed.The results showed that Fuxin area located in the cross position of T-shaped trough and was affected by the cold air which continuously glided down.The corresponding warm front on the ground advanced southward and arrived here.It was the weather background of this thunderstorm weather.The position variation of lightning occurrence was closely related to the strong echo movement of squall line,and the velocity echo clearly reflected and predicted the movement tendency of the radar echo.展开更多
Using single Doppler weather radar echo information, this paper presents a technique for recognizing two-di- mensional flow field structure of the severe storm and estimating the divergence, the vorticity, and the int...Using single Doppler weather radar echo information, this paper presents a technique for recognizing two-di- mensional flow field structure of the severe storm and estimating the divergence, the vorticity, and the intensity of wind shear line, and gives some examples.展开更多
Real-time 3D weather radar data processing makes it possible to efficiently simulate meteorological processes in digital Earth and support the assessment of meteorological disasters.The current real-time meteorologica...Real-time 3D weather radar data processing makes it possible to efficiently simulate meteorological processes in digital Earth and support the assessment of meteorological disasters.The current real-time meteorological operation system can only deal with radar data within 2D space as a flat map and lacks supporting 3D characteristics.Thus,valuable 3D information imbedded in radar data cannot be completely presented to meteorological experts.Due to the large amount of data and high complexity of radar data 3D operation,regular methods are not competent for supporting real-time 3D radar data processing and representation.This study aims to perform radar data 3D operations with high efficiency and instant speed to provide real-time 3D support for the meteorological field.In this paper,a topological framework composed of basic inner topological objects is proposed along with the quadtree structure and LOD architecture,based on which 3D operations on radar data can be conducted in a split second and 3D information can be presented in real time.As the applications of the proposed topological framework,two widely used 3D algorithms in the meteorological field are also implemented in this paper.Finally,a case study verifies the applicability and validity of the proposed topological framework.展开更多
基金supported by the China Ministry of Industry and Information Technology Foundation and Aeronautical Science Foundation of China(ASFC-201920007002)the National Key Research and Development Plan(2021YFB1600603)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology,Civil Aviation University of China.
文摘Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.
基金supported by the Science and Technology Grant No.520120210003,Jibei Electric Power Company of the State Grid Corporation of China。
文摘Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells.
基金the Knowledge Innovation Program of Chinese Academy Sciences (KZX3-SW-352)Frontier Program of Institute of Mountain Hazards and Environment, CAS (C3200307)
文摘Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (including topography, geology, land use, and etc.), rainfall and debris flow data. A system of regional prediction of impending debris flow was set up on ArcGIS 9.0 platform according to the model. The system used forecast precipitation data of Doppler weather radar and observational precipitation data as its input data. It could provide a prediction about the possibility of debris flow one to three hours before it happened, and was put into use in Liangshan Meteorological Observatory in Sichuan province in the monsoon of 2006.
基金Qinghai province key laboratory open fund of disaster prevention and reduction(QHKF201401)Key technology projects of China Meteorological Bureau(CMAGJ2014M21)+3 种基金National Natural Science Fund(41675029,41401504,41671425,41565008)Key Scientific Research Projects in Colleges and Universities(17A170005)China Postdoctoral Fund(2016M602232)Foundation of Henan University(2015YBZR020)
文摘Wind shear reflects that the wind field is not uniform, which is one of the primary factors which make the retrieval of the wind field difficult. Based on volume velocity process(VVP) wind field retrieval technique, the intensity of wind shear is identified in this paper. After analyzing the traditional techniques that rely on the difference of radial velocity to identify wind shear, a fixed difference among radial velocities that may cause false identification in a uniform wind field was found. Because of the non-uniformity in wind shear areas, the difference of retrieved results between surrounding analysis volumes can be used as a measurement to show how strong the wind shear is. According to the analysis of a severe convective weather process that occurred in Guangzhou, it can be found that the areas of wind shear appeared with the strength significantly larger than in other regions and the magnitude generally larger than4.5 m/(s·km). Besides, by comparing the variation of wind shear strength during the convection, it can be found that new cells will be more likely to generate when the strength is above 3.0 m/(s·km). Therefore, the analysis of strong wind shear's movement and development is helpful to forecasting severe convections.
基金supported by Natural Science Foundation of China(NSFC)(Grant No.31727901)。
文摘A novel weather radar system with distributed phased-array front-ends was developed. The specifications and preliminary data synthesis of this system are presented, which comprises one back-end and three or more front-ends. Each front-end, which utilizes a phased-array digital beamforming technology, sequentially transmits four 22.5°-width beams to cover the 0°–90° elevational scan within about 0.05 s. The azimuthal detection is completed by one mechanical scan of0°–360° azimuths within about 12 s volume-scan update time. In the case of three front-ends, they are deployed according to an acute triangle to form a fine detection area(FDA). Because of the triangular deployment of multiple phased-array front-ends and a unique synchronized azimuthal scanning(SAS) rule, this new radar system is named Array Weather Radar(AWR). The back-end controls the front-ends to scan strictly in accordance with the SAS rule that assures the data time differences(DTD) among the three front-ends are less than 2 s for the same detection point in the FDA. The SAS can maintain DTD < 2 s for an expanded seven-front-end AWR. With the smallest DTD, gridded wind fields are derived from AWR data, by sampling of the interpolated grid, onto a rectangular grid of 100 m ×100 m ×100 m at a 12 s temporal resolution in the FDA. The first X-band single-polarized three-front-end AWR was deployed in field experiments in 2018 at Huanghua International Airport, China. Having completed the data synthesis and processing, the preliminary observation results of the first AWR are described herein.
文摘A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of exhaustion, and then the main reason was determined using exclusive method. That is, the fault was closely related to the signal transmission channel from the antenna mount to servo system in RDA cabinet. After ex- amining questionable nodes in the transmission channels of the alarm signal, we found that the false alarm fault might result from the interference of a burr in the temperature sensing circuit of the elevation motor. In actual operation, a filter capacitor was connected with the corresponding pin in the upper optical board to screen the interference of a burr, thereby successfully eliminating the false alarm fault in antenna-servo system of the CIN- RAD/SA radar of Shanwei.
基金Supported by Science and Technology Open Research Fund Project of Guizhou Meteorological Bureau(KF[2009]08)。
文摘As weather radar stations require headroom environment to operate,they were mostly built on highlands which are usually unattended.The mains supply is relatively poor,and the risk of radar stoppages due to power outage is therefore ever-present.As such,the radar construction program is used to build a complementary security video monitoring system.By collecting monitoring images of the regulated power supply in real-time from power supply auto transfer systems in distribution rooms and radar transceiver rooms,using Spearman’s rank correlation coefficient to analyse pixel variation trends,and supplementing statistical analysis of pixel characteristics difference to eliminate misjudgments resulting from low image contrast in special scenarios,a software can be developed through C#.It has the function of automatically monitoring mains supply and alerting staff on duty to handle the power outage in a timely manner via text message so that any potential risk is neutralised before it can cause damage.This monitoring and auto-alerting approach is generally applicable to unattended rooms with large amounts of electronical equipment.
基金Supported by Scientific Research and Technology Development Project of Wuzhou Meteorological Bureau(WUQIKE2020001)。
文摘Based on updating of new generation weather radar software,compilation system of new generation weather radar case data could automatically back up data and compile radar case.Using C language and VC++6.0 development technology,the software realizes the automatic sorting and saving of radar base data,radar products and radar status information on different machines every day,and automatically creates various folders and files required for compiling data.By inputting the days,date,start and end times,renaming and compression of the base data,product data and status information could be automatically completed,to realize automation,batch,process and standardization of case data compilation.Since putting into the radar business,the operation has been stable and reliable.The working efficiency of business personnel has been improved,and a large number of manpower has been saved.It can be transplanted and popularized in other new generation weather radar stations.
文摘This work presents the climatology of the microphysics and the dynamics of weather systems in two coastal areas of São Paulo and the Espírito States at high spatial-temporal resolution as measured by two dual Doppler weather radars during the summer and early fall of 2015. Averages and respective standard deviations of polarimetric variables, namely, reflectivity (Z), differential reflectivity (Z<sub>DR</sub>), differential phase (ϕ<sub>DP</sub>), specific differential phase (K<sub>DP</sub>), copolar correlation coefficient (ρ<sub>oHV</sub>), radial velocity (V<sub>r</sub>), and the spectral width (W) were obtained within a 240-km range on plan position indicator (PPI), constant altitude plan position indicator (CAPPI) and vertical cross-sections to analyze overall horizontal and vertical precipitation microphysics and mesoscale circulation of prevailing weather systems, and their peculiarities over coastal and oceanic, and urban and rural areas. Overall, raindrops tend to be larger over the Metropolitan area of São Paulo from the surface to up to 6 km altitude indicating more vigorous updrafts caused by the heat island effect and the local sea breeze. The vertical microphysical structure is remarkably distinct over the Metropolitan Area of São Paulo (MASP) where thunderstorms can reach 20-km altitude in summertime under sea breeze and heat island effects. On the other hand, there is a dominancy of smaller drop sizes though larger ones observed close to the surface by the coast of Espírito Santo and at the land-ocean interface influenced by the local low-level jet and oceanic-type CCN. Convective cells tend to be smaller associated with Easterlies and more organized with Westerlies. The results indicate distinct features on hydrometeor types and circulation characteristics under these different surface and boundary-layer conditions in close agreement with previous results in the literature.
基金supported by the NOAA (Grant Nos. NA16AOR4320115 and NA11OAR4320072)NSF (Grant No. AGS-1341878)
文摘After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.
文摘3D image reconstruction for weather radar data can not only help the weatherman to improve the forecast efficiency and accuracy, but also help people to understand the weather conditions easily and quickly. Marching Cubes (MC) algorithm in the surface rendering has more excellent applicability in 3D reconstruction for the slice images;it may shorten the time to find and calculate the isosurface from raw volume data, reflect the shape structure more accurately. In this paper, we discuss a method to reconstruct the 3D weather cloud image by using the proposed Cube Weighting Interpolation (CWI) and MC algorithm. Firstly, we detail the steps of CWI, apply it to project the raw radar data into the cubes and obtain the equally spaced cloud slice images, then employ MC algorithm to draw the isosurface. Some experiments show that our method has a good effect and simple operation, which may provide an intuitive and effective reference for realizing the 3D surface reconstruction and meteorological image stereo visualization.
文摘This paper provides a new method for designing the load of transmitters switch components on provincial radar test platform. Based on the calculation of the specific parameters related to the actual charge switch components, the load-related data model is obtained, the simulation is carried out, and the results are consistent with the actual test results. Through the theoretical numerical analysis of the load of the charging switch components of the transmitter device in the new generation of weather radar maintenance test platform, radar maintenance personnel at all levels can deepen the thorough understanding of the CINRAD/SA transmitter and have some enlightenment and improvement on the maintenance guarantee ability of the new generation of weather radar.
文摘New generation Doppler weather radar (NEXTRAD) has become one of the most important tools for monitoring and forecasting severe weather. It has been widely used in some developed countries. The construction of China’s NEXTRAD network has started since 1998, and this project is supported by national debt. In this paper the author addresses the development of NEXTRAD techniques, the pre\|sent situation of construction and application of NEXTRAD in China, some problems to be carefully considered in construction, and seve\|ral new fields of future radar technique developments and applications in weather monitoring.
文摘According the work arrangements and requirements of carried satellite emergency communications, Fujian Meteorological Bureau establishes a satellite emergency communication system for radar stations to meet the needs of data transmission under the radar state of emergency. This paper introduces the main construction content, structure diagram, network diagram, drills and emergency communications procedures of the emergency communication system for the province’s meteorological radar satellite and provides the test emergency situation of the province’s meteorological radar-satellite data transmission. Satellite emergency communication system can basically meet the needs of emergency radar data transmission.
文摘Doppler weather radar has important applications in measuring the intrinsic factors of cloud, rainfall and various convective weather occurrences. Among them, CINRAD/CB Doppler weather radar is based on the requirements of the China Meteorological Administration and many units have been provided. The modulator is a critical part of the transmitter’s high voltage, where high voltage, high current, and energy conversion are concentrated. It is therefore necessary to redesign the transmitter modulator cooling system protection. This article describes the new design of hardware and software solutions. The fan is a DV5214/2N DC fan from Ebmpapst, Germany. The speed is up to 5000 rpm, the power is 18.5 W, and the single fan current is about 0.8 A. It is powered by 28 V. The protection board uses a DC/DC module to output a 5 V voltage and a 3.3 V voltage adjustment chip LM1117. The embedded web software is based on the TCP/IP protocol stack provided by MICROCHIP. After the cooling system is designed and installed in the radar station in Xi’an, China and other places, after long-term operation, the comprehensive test shows that the system runs well.
文摘Strong convective systems and the associated heavy rainfall events can trig-ger floods and landslides with severe detrimental consequences.These events have a high spatio-temporal variability,being difficult to predict by standard meteorological numerical models.This work proposes the M5Images method for performing the very short-term prediction(nowcasting)of heavy convective rainfall using weather radar data by means of a convolutional recurrent neural network.The recurrent part of it is a Long Short-Term Memory(LSTM)neural network.Prediction tests were performed for the city and surroundings of Campinas,located in the Southeastern Brazil.The convolutional recurrent neural network was trained using time series of rainfall rate images derived from weather radar data for a selected set of heavy rainfall events.The attained pre-diction performance was better than that given by the persistence forecasting method for different prediction times.
基金Supported by The Special Project of Public Welfare Industry Scientific Research(GYHY200806014)Nanjing University of Information Science & Technology Project(E30JG0730)
文摘Based on the radar data and lightning position indicator data of strong thunderstorm weather which happened in Fuxin on July 8,2007,the relationship between the lightning activity and the radar echo was analyzed.The results showed that Fuxin area located in the cross position of T-shaped trough and was affected by the cold air which continuously glided down.The corresponding warm front on the ground advanced southward and arrived here.It was the weather background of this thunderstorm weather.The position variation of lightning occurrence was closely related to the strong echo movement of squall line,and the velocity echo clearly reflected and predicted the movement tendency of the radar echo.
文摘Using single Doppler weather radar echo information, this paper presents a technique for recognizing two-di- mensional flow field structure of the severe storm and estimating the divergence, the vorticity, and the intensity of wind shear line, and gives some examples.
基金supported by National Natural Science Foundation of China:[Grant Number 41871285].
文摘Real-time 3D weather radar data processing makes it possible to efficiently simulate meteorological processes in digital Earth and support the assessment of meteorological disasters.The current real-time meteorological operation system can only deal with radar data within 2D space as a flat map and lacks supporting 3D characteristics.Thus,valuable 3D information imbedded in radar data cannot be completely presented to meteorological experts.Due to the large amount of data and high complexity of radar data 3D operation,regular methods are not competent for supporting real-time 3D radar data processing and representation.This study aims to perform radar data 3D operations with high efficiency and instant speed to provide real-time 3D support for the meteorological field.In this paper,a topological framework composed of basic inner topological objects is proposed along with the quadtree structure and LOD architecture,based on which 3D operations on radar data can be conducted in a split second and 3D information can be presented in real time.As the applications of the proposed topological framework,two widely used 3D algorithms in the meteorological field are also implemented in this paper.Finally,a case study verifies the applicability and validity of the proposed topological framework.