Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations ...Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations of soil water content and salinity around natural individual Tamarix ramosissiraa Ledeb. were invetigated in a semi-arid saline region of the upper Yellow River, Northwest China. Specifically, soil water content, electrical conductivity (EC), sodium adsorption ratio (SARa), and salt ions (including Na+, K+, Ca2+, Mg2+ and 8042-) were measured at different soil depths and at different distances from the trunk of T. ramasissima in May, July, and September 2016. The soil water content at the 20-80 cm depth was significantly lower in July and September than in May, indicating that T. ramosissima plants absorb a large amount of water through the roots during the growing period, leading to the decreasing of soil water content in the deep soil layer. At the 0-20 cm depth, there was a salt island effect around individual T. ramosissima, and the ECe differed significantly inside and outside the canopy of T. ramosissima in May and July. Salt bioaccumulation and stemflow were two major contributing factors to this difference. The SAR at the 0-20 cm depth was significantly different inside and outside the canopy of T. ramosissima in the three sampling months. The values of SAR~ at the 60-80 cm depth in May and July were significantly higher than those at the 0-60 cm depth and higher than that at the corresponding depth in September. The distribution of Na+ in the soil was similar to that of the SAI, while the concentrations of K+, Ca2+, and Mg2+ showed significant differences among the sampling months and soil depths. Both season and soil depth had highly significant effects on soil water content, ECe and SARa, whereas distance from the trunk of T. ramosissima only significantly affected ECe. Based on these results, we recommend co-planting of shallow-rooted salt-tolerant species near the Tamarx plants and avoiding planting herbaceous plants inside the canopy of T. ramodssima for afforestation in this semi-arid saline region. The results of this study may provide a reference for appropriate restoration in the semi-arid saline regions of the upper Yellow River.展开更多
The Yellow River basin is well known for its high sediment yield. However, this sediment yield has clearly decreased since the 1980 s, especially after the year 2000. The annual average sediment yield was 1.2 billion ...The Yellow River basin is well known for its high sediment yield. However, this sediment yield has clearly decreased since the 1980 s, especially after the year 2000. The annual average sediment yield was 1.2 billion tons before 2000, but has significantly decreased to 0.3 billion tons over the last 10 years. Changes in discharge and sediment yield for the Yellow River have attracted the attention of both the Central Government and local communities. This study aimed to identify the individual contributions of changes in precipitation and human activities(e.g. water conservancy projects, terracing, silt dams, socio-economic and needs, and soil and water conservation measures) to the decrease in discharge and sediment yield of the Yellow River. The study used both improved the hydrological method and the soil and water conservation method. The study focused on discharge analysis for the upper reaches and the investigation of sediments for the middle reaches of the river. The results showed that discharge and sediment yield have both presented significant decreasing trends over the past 50 years. Precipitation showed an insignificant decreasing trend over the same period. The annual average discharge decreased by 5.68 billion m3 above Lanzhou reach of the Yellow River from 2000 to 2012; human activities(e.g. socio-economic water use) contributed 43.4% of the total reduction, whereas natural factors(e.g. evaporation from lakes, wetlands and reservoirs) accounted for 56.6%. The decrease in annual discharge and sediment yield of the section between Hekouzhen station and Tongguan station were 12.4 billion m3 and 1.24 billion tons, respectively. Human activities contributed 76.5% and 72.2% of the total reduction in discharge and sediment yield, respectively, and were therefore the dominant factors in the changes in discharge and sediment yield of the Yellow River.展开更多
基金funded by the Fundamental Research Funds for the Central Universities (2016ZCQ06)the Forestry Industry Research Special Funds for Public Welfare Projects (201504402)the Application Technology of Seaweed Fertilizer Based on Desertification Control and Saline-alkili Soil Improvement (2016HXFWSBXY002)
文摘Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations of soil water content and salinity around natural individual Tamarix ramosissiraa Ledeb. were invetigated in a semi-arid saline region of the upper Yellow River, Northwest China. Specifically, soil water content, electrical conductivity (EC), sodium adsorption ratio (SARa), and salt ions (including Na+, K+, Ca2+, Mg2+ and 8042-) were measured at different soil depths and at different distances from the trunk of T. ramasissima in May, July, and September 2016. The soil water content at the 20-80 cm depth was significantly lower in July and September than in May, indicating that T. ramosissima plants absorb a large amount of water through the roots during the growing period, leading to the decreasing of soil water content in the deep soil layer. At the 0-20 cm depth, there was a salt island effect around individual T. ramosissima, and the ECe differed significantly inside and outside the canopy of T. ramosissima in May and July. Salt bioaccumulation and stemflow were two major contributing factors to this difference. The SAR at the 0-20 cm depth was significantly different inside and outside the canopy of T. ramosissima in the three sampling months. The values of SAR~ at the 60-80 cm depth in May and July were significantly higher than those at the 0-60 cm depth and higher than that at the corresponding depth in September. The distribution of Na+ in the soil was similar to that of the SAI, while the concentrations of K+, Ca2+, and Mg2+ showed significant differences among the sampling months and soil depths. Both season and soil depth had highly significant effects on soil water content, ECe and SARa, whereas distance from the trunk of T. ramosissima only significantly affected ECe. Based on these results, we recommend co-planting of shallow-rooted salt-tolerant species near the Tamarx plants and avoiding planting herbaceous plants inside the canopy of T. ramodssima for afforestation in this semi-arid saline region. The results of this study may provide a reference for appropriate restoration in the semi-arid saline regions of the upper Yellow River.
基金National Basic Research Program of China,No.2011CB403303National Key Technology R&D Program,No.2013BAC05B04National Natural Science Foundation of China,No.41571276
文摘The Yellow River basin is well known for its high sediment yield. However, this sediment yield has clearly decreased since the 1980 s, especially after the year 2000. The annual average sediment yield was 1.2 billion tons before 2000, but has significantly decreased to 0.3 billion tons over the last 10 years. Changes in discharge and sediment yield for the Yellow River have attracted the attention of both the Central Government and local communities. This study aimed to identify the individual contributions of changes in precipitation and human activities(e.g. water conservancy projects, terracing, silt dams, socio-economic and needs, and soil and water conservation measures) to the decrease in discharge and sediment yield of the Yellow River. The study used both improved the hydrological method and the soil and water conservation method. The study focused on discharge analysis for the upper reaches and the investigation of sediments for the middle reaches of the river. The results showed that discharge and sediment yield have both presented significant decreasing trends over the past 50 years. Precipitation showed an insignificant decreasing trend over the same period. The annual average discharge decreased by 5.68 billion m3 above Lanzhou reach of the Yellow River from 2000 to 2012; human activities(e.g. socio-economic water use) contributed 43.4% of the total reduction, whereas natural factors(e.g. evaporation from lakes, wetlands and reservoirs) accounted for 56.6%. The decrease in annual discharge and sediment yield of the section between Hekouzhen station and Tongguan station were 12.4 billion m3 and 1.24 billion tons, respectively. Human activities contributed 76.5% and 72.2% of the total reduction in discharge and sediment yield, respectively, and were therefore the dominant factors in the changes in discharge and sediment yield of the Yellow River.