期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection 被引量:5
1
作者 Xiao Li Chen Zhao Xinyu Liu 《Microsystems & Nanoengineering》 EI 2015年第1期112-118,共7页
This paper reports an electrochemical microfluidic paper-based analytical device(EμPAD)for glucose detection,featuring a highly sensitive working electrode(WE)decorated with zinc oxide nanowires(ZnO NWs).In addition ... This paper reports an electrochemical microfluidic paper-based analytical device(EμPAD)for glucose detection,featuring a highly sensitive working electrode(WE)decorated with zinc oxide nanowires(ZnO NWs).In addition to the common features ofμPADs,such as their low costs,high portability/disposability,and ease of operation,the reported EμPAD has three further advantages.(i)It provides higher sensitivity and a lower limit of detection(LOD)than previously reportedμPADs because of the high surface-to-volume ratio and high enzyme-capturing efficiency of the ZnO NWs.(ii)It does not need any light-sensitive electron mediator(as is usually required in enzymatic glucose sensing),which leads to enhanced biosensing stability.(iii)The ZnO NWs are directly synthesized on the paper substrate via low-temperature hydrothermal growth,representing a simple,low-cost,consistent,and mass-producible process.To achieve superior analytical performance,the on-chip stored enzyme(glucose oxidase)dose and the assay incubation time are tuned.More importantly,the critical design parameters of the EμPAD,including the WE area and the ZnO-NW growth level,are adjusted to yield tunable ranges for the assay sensitivity and LOD.The highest sensitivity that we have achieved is 8.24μA·mM^(−1)·cm^(−2),with a corresponding LOD of 59.5μM.By choosing the right combination of design parameters,we constructed EμPADs that cover the range of clinically relevant glucose concentrations(0−15 mM)and fully calibrated these devices using spiked phosphate-buffered saline and human serum.We believe that the reported approach for integrating ZnO NWs on EμPADs could be well utilized in many other designs of EμPADs and provides a facile and inexpensive paradigm for further enhancing the device performance. 展开更多
关键词 electrochemical detection enzymatic biosensor glucose detection paper-based microfluidics zinc oxide nanowire
原文传递
Fabricating AC/DC nanogenerators based on single ZnO nanowires by using a nanomanipulator in a scanning electron microscope
2
作者 Mei Liu Mengfan He +6 位作者 Aristide Djoulde Lingdi Kong Weilin Su Xin Bai Jinbo Chen Jinjun Rao Zhiming Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期25-31,共7页
Single zinc oxide nanowires(ZnO NWs)are promising for nanogenerators because of their excellent semiconducting and piezoelectric properties,but characterizing the latter efficiently is challenging.As reported here,an ... Single zinc oxide nanowires(ZnO NWs)are promising for nanogenerators because of their excellent semiconducting and piezoelectric properties,but characterizing the latter efficiently is challenging.As reported here,an electrical breakdown strategy was used to construct single ZnO NWs with a specific length.With the high operability of a nanomanipulator in a scanning electron microscope,ZnO-NW-based twoprobe and three-probe structures were constructed for fabricating AC/DC nanogenerators,respectively.For a ZnO NW,an AC output of between−15.31 mV and 5.82 mV was achieved,while for a DC nanogenerator,an output of24.3 mV was realized.Also,the three-probe structure’s output method was changed to verify the distribution of piezoelectric charges when a single ZnO NW is bent by a probe,and DC outputs of different amplitudes were achieved.This study provides a low-cost,highly convenient,and operational method for studying the AC/DC output characteristics of single NWs,which is beneficial for the further development of nanogenerators. 展开更多
关键词 zinc oxide nanowire Piezoelectric properties Nanomanipulator SEM AC/DC nanogenerators
下载PDF
Poly(Glycidyl Methacrylates)-grafted Zinc Oxide Nanowire by Surface-initiated Atom Transfer Radical Polymerization
3
作者 Bao Zhang Nantao Hu +4 位作者 Yanfang Wang Zi Wang Ying Wang Eric S.Kong Yafei Zhang 《Nano-Micro Letters》 SCIE EI CAS 2010年第4期285-289,共5页
Poly(glycidyl methacrylates)(PGMA) was grafted from zinc oxide(ZnO) nanowires via surface-initiated atom transfer radical polymerization(SI-ATRP) technique.Firstly,the ZnO nanowires were synthesized by the one-pot hyd... Poly(glycidyl methacrylates)(PGMA) was grafted from zinc oxide(ZnO) nanowires via surface-initiated atom transfer radical polymerization(SI-ATRP) technique.Firstly,the ZnO nanowires were synthesized by the one-pot hydrothermal technique.Subsequently,the ZnO was functionalized with 3-aminopropyl triethoxysilane,which was converted to macroinitiator by the esterification of them with 2-bromopropionyl bromide.PGMA grafted ZnO nanowires(PGMA-ZnO) were then synthesized in an ATRP of the GMA with CuCl/2,2`-bipyridine as the catalyst system.Kinetics studies revealed an approximate linear increase in weight of polymer with reaction time,indicating that the polymerization process owned some "living" character.The structure and composition of PGMA-ZnO were characterized with scanning electron microscope(SEM),energy-dispersive X-ray(EDX) spectrometer,fourier transform infrared spectroscopy(FT-IR) and thermogravimetric analysis(TGA). 展开更多
关键词 ATRP Glycidyl methacrylates SURFACE-INITIATED zinc oxide nanowires
下载PDF
Detection of Breast Cancer 1 (BRCA1) Gene Using an Electrochemical DNA Biosensor Based on Immobilized ZnO Nanowires 被引量:1
4
作者 Nur Azimah Mansor Zainiharyati Mohd Zain +4 位作者 Hairul Hisham Hamzah Mohd Shihabuddin Ahmad Noorden Siti Safura Jaapar Valerio Beni Zafar Husain Ibupoto 《Open Journal of Applied Biosensor》 2014年第2期9-17,共9页
Herein we report an electrochemical DNA biosensor for the rapid detection of sequence (5’ AAT GGA TTT ATC TGC TCT TCG 3’) specific for the breast cancer 1 (BRCA1) gene. The proposed electrochemical genosensor is bas... Herein we report an electrochemical DNA biosensor for the rapid detection of sequence (5’ AAT GGA TTT ATC TGC TCT TCG 3’) specific for the breast cancer 1 (BRCA1) gene. The proposed electrochemical genosensor is based on short oligonucleotide DNA probe immobilized onto zinc oxide nanowires (ZnONWs) chemically synthesized onto gold electrode via hydrothermal technique. The morphology studies of the ZnONWs, performed by field emission scanning electron microscopy (FESEM), showed that the ZnO nanowires are uniform, highly dense and oriented perpendicularly to the substrate. Recognition event between the DNA probe and the target was investigated by differential pulse voltammetry (DPV) in 0.1 M acetate buffer solution (ABS), pH 7.00;as a result of the hybridization, an oxidation signal was observed at +0.8 V. The influences of pH, target concentration, and non-complimentary DNA on biosensor performance were examined. The proposed DNA biosensor has the ability to detect the target sequence in the range of concentration between 10.0 and 100.0 μM with a detection limit of 3.32 μM. The experimental results demonstrated that the prepared ZnONWs/Au electrodes are suitable platform for the immobilization of DNA. 展开更多
关键词 zinc oxide nanowires DNA Biosensor Breast Cancer Gene BRCA1 DNA Hybridization Differential Pulse Voltammetry
下载PDF
Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds 被引量:5
5
作者 Imadeddine Azzouz Yamina Ghozlane Habba +4 位作者 Martine Capochichi-Gnambodoe Frédéric Marty Jérôme Vial Yamin Leprince-Wang Tarik Bourouina 《Microsystems & Nanoengineering》 EI CSCD 2018年第1期450-456,共7页
This paper reports fast and efficient chemical decontamination of water within a tree-branched centimeter-scale microfluidic reactor.The microreactor integrates Zinc oxide nanowires(ZnO NWs)in situ grown acting as an ... This paper reports fast and efficient chemical decontamination of water within a tree-branched centimeter-scale microfluidic reactor.The microreactor integrates Zinc oxide nanowires(ZnO NWs)in situ grown acting as an efficient photocatalytic nanomaterial layer.Direct growth of ZnO NWs within the microfluidic chamber brings this photocatalytic medium at the very close vicinity of the water flow path,hence minimizing the required interaction time to produce efficient purification performance.We demonstrate a degradation efficiency of 95%in o5 s of residence time in one-pass only.According to our estimates,it becomes attainable using microfluidic reactors to produce decontamination of merely 1 l of water per day,typical of the human daily drinking water needs.To conduct our experiments,we have chosen a laboratory-scale case study as a seed for addressing the health concern of water contamination by volatile organic compounds(VOCs),which remain difficult to remove using alternative decontamination techniques,especially those involving water evaporation.The contaminated water sample contains mixture of five pollutants:Benzene;Toluene;Ethylbenzene;m–p Xylenes;and o-Xylene(BTEX)diluted in water at 10 p.p.m.concentration of each.Degradation was analytically monitored in a selective manner until it falls below 1 p.p.m.for each of the five pollutants,corresponding to the maximum contaminant level(MCL)established by the US Environmental Protection Agency(EPA).We also report on a preliminary study,investigating the nature of the chemical by-products after the photocatalytic VOCs degradation process. 展开更多
关键词 microfluidic reactor water purification zinc oxide nanowires volatile organic compounds(VOCs) Benzene Toluene Ethylbenzene m-p Xylenes o-Xylene(BTEX)
原文传递
Superior activity of Rh1/ZnO single-atom catalyst for CO oxidation 被引量:6
6
作者 Bing Han Rui Lang +4 位作者 Hailian Tang Jia Xu Xiang-Kui Gu Botao Qiao Jingyue(Jimmy)Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第12期1847-1853,共7页
CO oxidation is of great importance in both fundamental study and industrial application.Supported noble metal catalysts are highly active for CO oxidation but suffer from the scarcity and high cost.Single-atom cataly... CO oxidation is of great importance in both fundamental study and industrial application.Supported noble metal catalysts are highly active for CO oxidation but suffer from the scarcity and high cost.Single-atom catalysts(SACs)can maximize the metal atom efficiency.Herein,ZnO nanowire(ZnO-nw)supported Rh,Au,and Pt SACs were successfully developed to investigate their CO oxidation performance.Interestingly,it was found that Rh1/ZnO-nw showed much higher activity than the other noble metals which are usually regarded as good candidates for CO oxidation.In addition,the Rh SAC possessed high stability in high-temperature CO oxidation under simulated conditions in the presence of water and hydrocarbons.The high activity and stability make Rh1/ZnO-nw promising for practical applications,especially in the automotive exhaust emission control.Theoretical calculations indicate that the CO oxidation proceeds via the Mars-van Krevelen mechanism and the lowest barrier for the rate-limiting O2 dissociation at a surface oxygen vacancy site is a key factor in determining the observed highest activity of Rh1/ZnO-nw amongst the studied SACs. 展开更多
关键词 Single-atom catalysis Carbon monoxide oxidation RHODIUM zinc oxide nanowire Density functional theory calculations
下载PDF
Growth and Characterization of Pencil-Like ZnO Nanowires in the Presence of a Disturbance in Boundary Layer
7
作者 A.Kamalianfar Mahmoud Godarz Naseri +2 位作者 Marzih Kamalianfar S.A.Halim K.P.Lim 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第6期595-600,共6页
Pencil-like zinc oxide(ZnO) nanowire was synthesized on Si(111) substrate through a simple vapor phase method using a mixture of zinc oxide and graphite as the source material. The source inside a quartz tube crea... Pencil-like zinc oxide(ZnO) nanowire was synthesized on Si(111) substrate through a simple vapor phase method using a mixture of zinc oxide and graphite as the source material. The source inside a quartz tube created a Zn-rich vapor that facilitated the formation and growth of ZnO nanowires. Field emission scanning electron microscopic studies indicated that pencil-like ZnO nanowires had a size of the range from 50 to 150 nm in diameter and several microns in length. X-ray diffraction was used to investigate the crystal structure of ZnO nanowires. Raman scattering and photoluminescence were applied to characterize the optical properties of the pencils. The growth mechanism of the nanopencils was discussed based on the growth conditions. 展开更多
关键词 zinc oxide nanowires Vapor-phase transport Pencil-like
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部