Background: Preeclampsia is reported to complicate 2% - 8% of pregnancies globally and is an important cause of maternal and perinatal morbidity and mortality. The aetiology and pathogenesis are still poorly understoo...Background: Preeclampsia is reported to complicate 2% - 8% of pregnancies globally and is an important cause of maternal and perinatal morbidity and mortality. The aetiology and pathogenesis are still poorly understood and substantial improvement has not been made in the prediction, prevention and treatment of the disease. Objective: To compare the frequency of activated protein C resistance (APC-R) in patients with pre-eclampsia to that of normotensive pregnant women and to determine the correlation between activated protein ratio (APC-ratio) and the severity of pre-eclampsia. Methodology: A cross-sectional study was carried out in 100 pre-eclamptic patients and 100 normotensive pregnant controls. The APC-ratio was determined using the modified activated partial thromboplastin time. Study participants with APC-ratio of less than 2.0 were defined as having APC-R. Data was analyzed using SPSS version 22.0. Results: Mean APC-ratio was significantly lower in pre-eclamptics (2.89 ± 1.70) compared to normotensive pregnant women (3.57 ± 1.06) (p = 0.0008) and the levels were also higher in mild (2.95 ± 1.15) compared to severe pre-eclamptics (2.62 ± 1.14). The frequency of APC-R was 26% among women with pre-eclampsia compared to 4% among normotensive controls (p = 0.000). Among 100 pre-eclamptic women 7 (21.2%) out of 33 with mild pre–eclampsia had APC-R, while 19 (28.4%) out of 67 with severe pre-eclampsia had APC-R. APC-ratio had a significant negative correlation with mean arterial blood pressure (r = −0.324;p = 0.000) and proteinuria (r = −0.379;p = 0.000) among study participants. Conclusion: The frequency of activated protein c resistance is significantly higher in pre-eclamptics compared to normotensive pregnant women and this is more pronounced in those with severe pre-eclampsia compared with those with mild disease. APC-R may therefore be used as a marker of severity in the disease.展开更多
A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cel...A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cell potential was not affected by the total electrolyte concentration when the total cation concentration was 10-1-10-3 mol L-1 and the concentration ratio CK+ / CNa+. was 10:1 to 1:50. When the concentration ratios were equal to 1and the total electrolyte concentrations were 10-2 and 10-3 mol L-1, the ion activity ratio measurement would not be affected by pH in the pH range of 3.5 to 11.5 and 4.4 to 11 respectively. Ions other than H+ have no remarkable influence on the measurement. The ion activity ratio of K+ to Na+ measured directly in soil suspension agree well with those in centrifuged supernant solution. The relative deviation was within 4%. From the measured ion activity ratio, the difference of the bonding energies of K+ and Na+ ions was calculated.展开更多
The activities of municipal solid waste incineration (MSWI) fly ash and incineration residues were studied contrastively, through the component analysis and the activity ratio tests. The mechanical properties, hydra...The activities of municipal solid waste incineration (MSWI) fly ash and incineration residues were studied contrastively, through the component analysis and the activity ratio tests. The mechanical properties, hydration mechanism and leaching toxicity of the hardened cement paste mixing with MSWI fly ash and incineration residues were investigated. The experimental results indicated that the active constituents (CaO+Al2O3+Fe2O3) in MSWI fly ash were higher than those in incineration residues. Therefore the activity ratio of MSWI fly ash was 43.58%, twice as much as that of incineration residues. Meanwhile, the hydration of cement was delayed by mixing with MSWI fly ash and incineration residues, which also reduced the cement strength markedly. By adding with exceeding 20% MSWI fly ash, the specimens expanded and microcracks appeared. The leaching toxicities of cement pasted mixed with MSWI fly ash and incineration residues were lower than the Chinese national standard. Accordingly the cement mixed by MSWI fly ash and incineration residues can be considered as the environment-friendly materials.展开更多
In order to quantitatively describe the difference of optimum active and inert ratio of various metamorphic grade coking coals, the rule of coke micro-strength index (MSI), determinated by adding different proportio...In order to quantitatively describe the difference of optimum active and inert ratio of various metamorphic grade coking coals, the rule of coke micro-strength index (MSI), determinated by adding different proportions of inert content to ten kinds of single coal, changing with active and inert ratio has been investigated. Three kinds of change rule of the MSI of ten kinds of single coal changing with active and inert ratio have been obtained in the research. It has been demonstrated that Gauss curve model is the optimal model to describe the optimum active and inert ratio of different metamorphic grade coals. On this basis, the optimum active and inert ratio of different metamorphic grade coals can be given.展开更多
Polyvinyl alcohol (PVA)-sodium polyacrylate (PAAS)-KOH-H2O alkaline polymer electrolyte film with high ionic conductivity was prepared by a solution-casting method. Polymer Ni(OH)2/activated carbon (AC) hybrid...Polyvinyl alcohol (PVA)-sodium polyacrylate (PAAS)-KOH-H2O alkaline polymer electrolyte film with high ionic conductivity was prepared by a solution-casting method. Polymer Ni(OH)2/activated carbon (AC) hybrid supercapacitors with different electrode active material mass ratios (positive to negative) were fabricated using this alkaline polymer electrolyte, nickel hydroxide positive electrodes, and AC negative electrodes. Galvanostatic charge/ discharge and electrochemical impedance spectroscopy (EIS) methods were used to study the electrochemical performance of the capacitors, such as charge/discharge specific capacitance, rate charge/discharge ability, and charge/discharge cyclic stability. Experimental results showed that with the decreasing of active material mass ratio m(Ni(OH)2)/m(AC), the charge/discharge specific capacitance increases, but the rate charge/discharge ability and the charge/discharge cyclic stability decrease.展开更多
The optimum multiparameter(OMP) method was often used to determine the percentages of water masses based on temperature, salinity and other parameters, like nutrient or dissolved oxygen(DO). There are a number of wate...The optimum multiparameter(OMP) method was often used to determine the percentages of water masses based on temperature, salinity and other parameters, like nutrient or dissolved oxygen(DO). There are a number of water masses in the East China Sea(ECS), a marginal sea of the western Pacific Ocean. However, it is difficult to clarify the proportion of water masses using traditional parameters, such as temperature, salinity, nutrient or DO because of the occurring of intensive biogeochemical processes in the near shore and shelf areas. Here, we reported the use of ^(234)U/^(238)Uactivity ratio embedded in the OMP method. The results indicate that seawater in the northern ECS mainly consisted of the estuarine water of Changjiang River(CEW), Kuroshio water(KW), and Yellow Sea Coastal Current(YSCC). In March 2017, the CEW only influenced the offshore waters shallower than30 m;the KW affected the east edge and the YSCC contributed more than 75% in the northern ECS.展开更多
The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered ...The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO :SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L Cr ′^ m/s , and a linear relationship between L Cr ′^m/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.展开更多
From the study of the Strengbach and Ringelbach watersheds we propose to illustrate the interest of combining the geochemical tracing and geochemical modeling approaches on surface and deep borehole waters,to decipher...From the study of the Strengbach and Ringelbach watersheds we propose to illustrate the interest of combining the geochemical tracing and geochemical modeling approaches on surface and deep borehole waters,to decipher the diversity of the water flow and the associated water–rock interactions in such elementary mountainous catchments. The results point to a clear geochemical typology of waters depending on the water circulations(deep vs. hypodermic) within the substratum.展开更多
An attempt was made to improve the adsorption capability of the normal sand to be used as adsorbent for phenol and cadmium This has been done by producing a coated sand media. The coating process was done using emulsi...An attempt was made to improve the adsorption capability of the normal sand to be used as adsorbent for phenol and cadmium This has been done by producing a coated sand media. The coating process was done using emulsion asphalt to convert the normal sand to carbonated sand by using chemical treatment with sulfuric acid. The production process involves mixing of the sand with asphalt and an acid, then subjecting the mix to a heating process. Different mixing ratios, heating temperatures and times (activation times) were tried to obtain the optimum conditions at which the highest removal efficiency is obtained. Three types of acids were tried acetic acid, phosphoric acid and sulfuric acid. It was found that the sulfuric acid requires the lowest activation time, hence selected for the production. The removal efficiency of the produced media was significantly affected by the temperature, mixing ratio and activation heating time. The results show that, the optimum conditions for the production process are 350 , (1:2:3) (Asphalt/acid/sand) and 52 min for temperature, mixing ratio and activation heating time respectively. The final product was tested and found effective as an adsorbent media for phenol and cadmium. The removal efficiencies of these two pollutants in a batch adsorber were found 82.42% and 86.67%, respectively. The X-R diffraction and FTIR spectra tests had proved this media as an adsorbent.展开更多
The building sector is one of the largest energy user and carbon emitters globally.To increase the utilization rate of renewable energy and reduce carbon dioxide emissions,the optimal technical scheme of active public...The building sector is one of the largest energy user and carbon emitters globally.To increase the utilization rate of renewable energy and reduce carbon dioxide emissions,the optimal technical scheme of active public institutions and coupled utilization of renewable energy is studied.In this study,the energy consumption of three types of public institutions in various regions of China was simulated by using DeST building energy consumption software,combined with energy conversion efficiency and data released by the National Bureau of Statistics,and the total energy demand and total energy supply of public institutions were predicted using the load density method.Based on the coupling mechanism of the MARKAL model,the optimal proportion of renewable energy in the energy supply of public buildings in different regions is determined.Through the study of the number of public institutions in various regions of China,energy consumption characteristics,construction area,and other related data,the reverse energy flow method is creatively proposed,and the active and renewable energy coupling algorithm from the energy demand side of public institutions to the energy supply side is established.The results show that the central region has the highest utilization rate of renewable energy in the public sector,reaching 36.18%.The use of renewable energy in public buildings in hot summer and warm winter zones decreased to 35.08%,and it was 12.82% in cold zones.By 2025,the proportion of renewable energy resources in China is expected to reach 29.2%.The energy coupling model and algorithm constructed in this paper can provide a basis for the coupling macro configuration of renewable energy in public institutions in China.展开更多
The catalysis of Au thin film could be improved by fabrication of array structures in large area.In this work,nanoimprint lithography has been developed tofabricate flexible Au micro-array(MA)electrodes with~100%cover...The catalysis of Au thin film could be improved by fabrication of array structures in large area.In this work,nanoimprint lithography has been developed tofabricate flexible Au micro-array(MA)electrodes with~100%coverage.Advanced electron microscopy characterisations have directly visualised the atomic-scale three-dimensional(3D)nanostructures with a maximum depth of 6 atomic layers.In-situ observation unveils the crystal growth in the form of twinning.High double layer capacitance brings about large number of active sites on the Au thin film and has a logarithmic relationship with mesh grade.Electrochemistry testing shows that the Au MAs perform much better ethanol oxidation reaction than the planar sample;MAs with higher mesh grade have a greater active site utilisation ratio(ASUR),which is important to build electrochemical double layer for efficient charge transfer.Further improvement on ASUR is expected for greater electrocatalytic performance and potential application in direct ethanol fuel cell.展开更多
Limb-loaded walking using ankle weights has been widely applied to increase exercise intensity in older adults.Examining changes in the activation pattern between proximal(RFP)and distal(RFD)regions of the rectus femo...Limb-loaded walking using ankle weights has been widely applied to increase exercise intensity in older adults.Examining changes in the activation pattern between proximal(RFP)and distal(RFD)regions of the rectus femoris(RF)muscle is key to clarifying gait deficits in older adults.The aim of this study was to determine regional neuromuscular regulation within the RF muscle following three-month limb-loaded walking in older adults.The study participants were 22 healthy older adults(696.3 years)who walked at least 160 min per month.Surface electromyography(EMG)and motion capture were used to measure the neuromuscular activities of RFP and RFD and generate kinematic data on the left lower extremity on walking for 240 s at the preferred gait speed on a treadmill at pre-and post-intervention,respectively.Averaged rectified values(ARV)of RFP and RFD were normalized by maximum values of ARV during a gait cycle within ten consecutive gait cycles.Normalized ARV of RFP was greater than RFD at 30%–40%and 70%–90%of the gait cycle and hip joint flexion at 0%–100%,and the walking speed and swing timing at post-were greater than at pre-intervention(p<0.05).No significant differences were noted in the RFP to RFD activity ratio(RFP/RFD ratio)between pre-and post-intervention,and there was no correlation between the RFP activity level and hip flexion angle in the swing phase(p>0.05).The activity of RFP compared with RFD and hip joint flexion were increased following limb-loaded walking intervention in older adults.展开更多
文摘Background: Preeclampsia is reported to complicate 2% - 8% of pregnancies globally and is an important cause of maternal and perinatal morbidity and mortality. The aetiology and pathogenesis are still poorly understood and substantial improvement has not been made in the prediction, prevention and treatment of the disease. Objective: To compare the frequency of activated protein C resistance (APC-R) in patients with pre-eclampsia to that of normotensive pregnant women and to determine the correlation between activated protein ratio (APC-ratio) and the severity of pre-eclampsia. Methodology: A cross-sectional study was carried out in 100 pre-eclamptic patients and 100 normotensive pregnant controls. The APC-ratio was determined using the modified activated partial thromboplastin time. Study participants with APC-ratio of less than 2.0 were defined as having APC-R. Data was analyzed using SPSS version 22.0. Results: Mean APC-ratio was significantly lower in pre-eclamptics (2.89 ± 1.70) compared to normotensive pregnant women (3.57 ± 1.06) (p = 0.0008) and the levels were also higher in mild (2.95 ± 1.15) compared to severe pre-eclamptics (2.62 ± 1.14). The frequency of APC-R was 26% among women with pre-eclampsia compared to 4% among normotensive controls (p = 0.000). Among 100 pre-eclamptic women 7 (21.2%) out of 33 with mild pre–eclampsia had APC-R, while 19 (28.4%) out of 67 with severe pre-eclampsia had APC-R. APC-ratio had a significant negative correlation with mean arterial blood pressure (r = −0.324;p = 0.000) and proteinuria (r = −0.379;p = 0.000) among study participants. Conclusion: The frequency of activated protein c resistance is significantly higher in pre-eclamptics compared to normotensive pregnant women and this is more pronounced in those with severe pre-eclampsia compared with those with mild disease. APC-R may therefore be used as a marker of severity in the disease.
文摘A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cell potential was not affected by the total electrolyte concentration when the total cation concentration was 10-1-10-3 mol L-1 and the concentration ratio CK+ / CNa+. was 10:1 to 1:50. When the concentration ratios were equal to 1and the total electrolyte concentrations were 10-2 and 10-3 mol L-1, the ion activity ratio measurement would not be affected by pH in the pH range of 3.5 to 11.5 and 4.4 to 11 respectively. Ions other than H+ have no remarkable influence on the measurement. The ion activity ratio of K+ to Na+ measured directly in soil suspension agree well with those in centrifuged supernant solution. The relative deviation was within 4%. From the measured ion activity ratio, the difference of the bonding energies of K+ and Na+ ions was calculated.
基金Funded by the Major State Basic Research and Development Program ofChina ("973" Program) (No.2009CB623201)
文摘The activities of municipal solid waste incineration (MSWI) fly ash and incineration residues were studied contrastively, through the component analysis and the activity ratio tests. The mechanical properties, hydration mechanism and leaching toxicity of the hardened cement paste mixing with MSWI fly ash and incineration residues were investigated. The experimental results indicated that the active constituents (CaO+Al2O3+Fe2O3) in MSWI fly ash were higher than those in incineration residues. Therefore the activity ratio of MSWI fly ash was 43.58%, twice as much as that of incineration residues. Meanwhile, the hydration of cement was delayed by mixing with MSWI fly ash and incineration residues, which also reduced the cement strength markedly. By adding with exceeding 20% MSWI fly ash, the specimens expanded and microcracks appeared. The leaching toxicities of cement pasted mixed with MSWI fly ash and incineration residues were lower than the Chinese national standard. Accordingly the cement mixed by MSWI fly ash and incineration residues can be considered as the environment-friendly materials.
文摘In order to quantitatively describe the difference of optimum active and inert ratio of various metamorphic grade coking coals, the rule of coke micro-strength index (MSI), determinated by adding different proportions of inert content to ten kinds of single coal, changing with active and inert ratio has been investigated. Three kinds of change rule of the MSI of ten kinds of single coal changing with active and inert ratio have been obtained in the research. It has been demonstrated that Gauss curve model is the optimal model to describe the optimum active and inert ratio of different metamorphic grade coals. On this basis, the optimum active and inert ratio of different metamorphic grade coals can be given.
基金Supported by Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50102)
文摘Polyvinyl alcohol (PVA)-sodium polyacrylate (PAAS)-KOH-H2O alkaline polymer electrolyte film with high ionic conductivity was prepared by a solution-casting method. Polymer Ni(OH)2/activated carbon (AC) hybrid supercapacitors with different electrode active material mass ratios (positive to negative) were fabricated using this alkaline polymer electrolyte, nickel hydroxide positive electrodes, and AC negative electrodes. Galvanostatic charge/ discharge and electrochemical impedance spectroscopy (EIS) methods were used to study the electrochemical performance of the capacitors, such as charge/discharge specific capacitance, rate charge/discharge ability, and charge/discharge cyclic stability. Experimental results showed that with the decreasing of active material mass ratio m(Ni(OH)2)/m(AC), the charge/discharge specific capacitance increases, but the rate charge/discharge ability and the charge/discharge cyclic stability decrease.
基金The National Natural Science Foundation of China under contract Nos 41876077 and 41530965the National Key Research and Development Program of China under contract No.2016YFA0601300。
文摘The optimum multiparameter(OMP) method was often used to determine the percentages of water masses based on temperature, salinity and other parameters, like nutrient or dissolved oxygen(DO). There are a number of water masses in the East China Sea(ECS), a marginal sea of the western Pacific Ocean. However, it is difficult to clarify the proportion of water masses using traditional parameters, such as temperature, salinity, nutrient or DO because of the occurring of intensive biogeochemical processes in the near shore and shelf areas. Here, we reported the use of ^(234)U/^(238)Uactivity ratio embedded in the OMP method. The results indicate that seawater in the northern ECS mainly consisted of the estuarine water of Changjiang River(CEW), Kuroshio water(KW), and Yellow Sea Coastal Current(YSCC). In March 2017, the CEW only influenced the offshore waters shallower than30 m;the KW affected the east edge and the YSCC contributed more than 75% in the northern ECS.
基金financially supported by the National Natural Science Foundation of China (No. 51474021)the Fundamental Research Funds for the Central Universities of China (No. FRF-SD-12-009A)
文摘The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO :SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L Cr ′^ m/s , and a linear relationship between L Cr ′^m/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.
基金financially supported by funding from the CPER-Alsace REALISE program,the Equipex program CRITEX,the CNRS SOERE RBV and the LABEX"G-Eau-Thermie profonde"funding from the French ANR Program under grant agreement ANR-15-CE06-0014(Projet CANTAREAlsace)
文摘From the study of the Strengbach and Ringelbach watersheds we propose to illustrate the interest of combining the geochemical tracing and geochemical modeling approaches on surface and deep borehole waters,to decipher the diversity of the water flow and the associated water–rock interactions in such elementary mountainous catchments. The results point to a clear geochemical typology of waters depending on the water circulations(deep vs. hypodermic) within the substratum.
文摘An attempt was made to improve the adsorption capability of the normal sand to be used as adsorbent for phenol and cadmium This has been done by producing a coated sand media. The coating process was done using emulsion asphalt to convert the normal sand to carbonated sand by using chemical treatment with sulfuric acid. The production process involves mixing of the sand with asphalt and an acid, then subjecting the mix to a heating process. Different mixing ratios, heating temperatures and times (activation times) were tried to obtain the optimum conditions at which the highest removal efficiency is obtained. Three types of acids were tried acetic acid, phosphoric acid and sulfuric acid. It was found that the sulfuric acid requires the lowest activation time, hence selected for the production. The removal efficiency of the produced media was significantly affected by the temperature, mixing ratio and activation heating time. The results show that, the optimum conditions for the production process are 350 , (1:2:3) (Asphalt/acid/sand) and 52 min for temperature, mixing ratio and activation heating time respectively. The final product was tested and found effective as an adsorbent media for phenol and cadmium. The removal efficiencies of these two pollutants in a batch adsorber were found 82.42% and 86.67%, respectively. The X-R diffraction and FTIR spectra tests had proved this media as an adsorbent.
基金supported by National Natural Science Funds(52078308)Liao Ning Revitalization Talents Program(XLYC2007003)the Educational Commission of Liaoning Province of China(lnzd202003).
文摘The building sector is one of the largest energy user and carbon emitters globally.To increase the utilization rate of renewable energy and reduce carbon dioxide emissions,the optimal technical scheme of active public institutions and coupled utilization of renewable energy is studied.In this study,the energy consumption of three types of public institutions in various regions of China was simulated by using DeST building energy consumption software,combined with energy conversion efficiency and data released by the National Bureau of Statistics,and the total energy demand and total energy supply of public institutions were predicted using the load density method.Based on the coupling mechanism of the MARKAL model,the optimal proportion of renewable energy in the energy supply of public buildings in different regions is determined.Through the study of the number of public institutions in various regions of China,energy consumption characteristics,construction area,and other related data,the reverse energy flow method is creatively proposed,and the active and renewable energy coupling algorithm from the energy demand side of public institutions to the energy supply side is established.The results show that the central region has the highest utilization rate of renewable energy in the public sector,reaching 36.18%.The use of renewable energy in public buildings in hot summer and warm winter zones decreased to 35.08%,and it was 12.82% in cold zones.By 2025,the proportion of renewable energy resources in China is expected to reach 29.2%.The energy coupling model and algorithm constructed in this paper can provide a basis for the coupling macro configuration of renewable energy in public institutions in China.
基金the MOE AcRF Tier 1 grant M4011528.The XRD and FEG-TEM characterisations were performed at Facility for Analysis,Characterisation,Testing and Simulation(FACTS)Labthe FEG-SEM/FIB characterisations were carried out at Microelectronics Reliability and Characterisation(MRC)Lab.
文摘The catalysis of Au thin film could be improved by fabrication of array structures in large area.In this work,nanoimprint lithography has been developed tofabricate flexible Au micro-array(MA)electrodes with~100%coverage.Advanced electron microscopy characterisations have directly visualised the atomic-scale three-dimensional(3D)nanostructures with a maximum depth of 6 atomic layers.In-situ observation unveils the crystal growth in the form of twinning.High double layer capacitance brings about large number of active sites on the Au thin film and has a logarithmic relationship with mesh grade.Electrochemistry testing shows that the Au MAs perform much better ethanol oxidation reaction than the planar sample;MAs with higher mesh grade have a greater active site utilisation ratio(ASUR),which is important to build electrochemical double layer for efficient charge transfer.Further improvement on ASUR is expected for greater electrocatalytic performance and potential application in direct ethanol fuel cell.
基金supported by AMED(Japan Agency for Medical Research and Development)[Grant number JP19le0110012].
文摘Limb-loaded walking using ankle weights has been widely applied to increase exercise intensity in older adults.Examining changes in the activation pattern between proximal(RFP)and distal(RFD)regions of the rectus femoris(RF)muscle is key to clarifying gait deficits in older adults.The aim of this study was to determine regional neuromuscular regulation within the RF muscle following three-month limb-loaded walking in older adults.The study participants were 22 healthy older adults(696.3 years)who walked at least 160 min per month.Surface electromyography(EMG)and motion capture were used to measure the neuromuscular activities of RFP and RFD and generate kinematic data on the left lower extremity on walking for 240 s at the preferred gait speed on a treadmill at pre-and post-intervention,respectively.Averaged rectified values(ARV)of RFP and RFD were normalized by maximum values of ARV during a gait cycle within ten consecutive gait cycles.Normalized ARV of RFP was greater than RFD at 30%–40%and 70%–90%of the gait cycle and hip joint flexion at 0%–100%,and the walking speed and swing timing at post-were greater than at pre-intervention(p<0.05).No significant differences were noted in the RFP to RFD activity ratio(RFP/RFD ratio)between pre-and post-intervention,and there was no correlation between the RFP activity level and hip flexion angle in the swing phase(p>0.05).The activity of RFP compared with RFD and hip joint flexion were increased following limb-loaded walking intervention in older adults.