With the increasing penetration of wind power,using wind turbines to participate in the frequency regulation to support power system has become a clear consensus.To accurately quantify the inertia provided by the doub...With the increasing penetration of wind power,using wind turbines to participate in the frequency regulation to support power system has become a clear consensus.To accurately quantify the inertia provided by the doubly-fed induction generator(DFIG)based wind farm,the frequency response model of DFIG with additional frequency control is established,and then by using Routh approximation,the explicit expression of the virtual moment of inertia is derived for the DFIG gridconnected system.To further enhance the availability of the expression,an estimation method is proposed based on the matrix pencil method and the least squares algorithm for estimating the virtual moment of inertia provided by the wind farm.Finally,numerical results tested by a DFIG grid-connected system and a modified IEEE 30-bus system verify the derived expression of the virtual moment of inertia and the proposed estimation method.展开更多
When an additional frequency control is implemented in the voltage source converter-based multi-terminal high voltage direct current(VSC-MTDC)system,the DC grid is capable of responding to a frequency disturbance in t...When an additional frequency control is implemented in the voltage source converter-based multi-terminal high voltage direct current(VSC-MTDC)system,the DC grid is capable of responding to a frequency disturbance in the AC system.However,the original additional frequency control may cause the DC voltage to exceed the limit when providing power for a severe frequency disturbance,threatening the security of the DC system.A novel dynamic additional frequency control strategy for the VSC-MTDC system is developed based on the relationship between the DC voltage and the frequency droop coefficient.A dynamic frequency droop coefficient is designed to adaptively adjust the support power of the DC grid,balancing the frequency regulation of the disturbed AC system and the voltage stability of the DC grid.A DC voltage recovery method based on multi-converter cooperation is proposed to cope with the DC voltage deviation caused by the additional frequency control.Simulations validate the advantages and satisfactory performance of the proposed method during power disturbances with different severities and for the process of DC voltage recovery.展开更多
基金This work was supported in part by the National Science Foundation of China(No.51877015)the Science and Technology Foundation of State Grid Corporation of China(No.SGTYHT/19-JS-215).
文摘With the increasing penetration of wind power,using wind turbines to participate in the frequency regulation to support power system has become a clear consensus.To accurately quantify the inertia provided by the doubly-fed induction generator(DFIG)based wind farm,the frequency response model of DFIG with additional frequency control is established,and then by using Routh approximation,the explicit expression of the virtual moment of inertia is derived for the DFIG gridconnected system.To further enhance the availability of the expression,an estimation method is proposed based on the matrix pencil method and the least squares algorithm for estimating the virtual moment of inertia provided by the wind farm.Finally,numerical results tested by a DFIG grid-connected system and a modified IEEE 30-bus system verify the derived expression of the virtual moment of inertia and the proposed estimation method.
基金supported by the Science and Technology Project of SGCC (SGZJ0000KXJS1900419).
文摘When an additional frequency control is implemented in the voltage source converter-based multi-terminal high voltage direct current(VSC-MTDC)system,the DC grid is capable of responding to a frequency disturbance in the AC system.However,the original additional frequency control may cause the DC voltage to exceed the limit when providing power for a severe frequency disturbance,threatening the security of the DC system.A novel dynamic additional frequency control strategy for the VSC-MTDC system is developed based on the relationship between the DC voltage and the frequency droop coefficient.A dynamic frequency droop coefficient is designed to adaptively adjust the support power of the DC grid,balancing the frequency regulation of the disturbed AC system and the voltage stability of the DC grid.A DC voltage recovery method based on multi-converter cooperation is proposed to cope with the DC voltage deviation caused by the additional frequency control.Simulations validate the advantages and satisfactory performance of the proposed method during power disturbances with different severities and for the process of DC voltage recovery.