期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A HEVC Video Steganalysis Method Using the Optimality of Motion Vector Prediction
1
作者 Jun Li Minqing Zhang +2 位作者 Ke Niu Yingnan Zhang Xiaoyuan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2085-2103,共19页
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio... Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios. 展开更多
关键词 Video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality
下载PDF
A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries
2
作者 Tao Yan Javed Rashid +2 位作者 Muhammad Shoaib Saleem Sajjad Ahmad Muhammad Faheem 《Computers, Materials & Continua》 SCIE EI 2024年第11期2685-2708,共24页
Electricity is essential for keeping power networks balanced between supply and demand,especially since it costs a lot to store.The article talks about different deep learning methods that are used to guess how much g... Electricity is essential for keeping power networks balanced between supply and demand,especially since it costs a lot to store.The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce.The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand.There is a new deep learning model called the Green-electrical Production Ensemble(GP-Ensemble).It combines three types of neural networks:convolutional neural networks(CNNs),gated recurrent units(GRUs),and feedforward neural networks(FNNs).The model promises to improve prediction accuracy.The 1965–2023 dataset covers green energy generation statistics from ten Asian countries.Due to the rising energy supply-demand mismatch,the primary goal is to develop the best model for predicting future power production.The GP-Ensemble deep learning model outperforms individual models(GRU,FNN,and CNN)and alternative approaches such as fully convolutional networks(FCN)and other ensemble models in mean squared error(MSE),mean absolute error(MAE)and root mean squared error(RMSE)metrics.This study enhances our ability to predict green electricity production over time,with MSE of 0.0631,MAE of 0.1754,and RMSE of 0.2383.It may influence laws and enhance energy management. 展开更多
关键词 Green energy advanced predictive techniques convolutional neural networks(CNNs) gated recurrent units(GRUs) deep learning for electricity prediction green-electrical production ensemble technique
下载PDF
Reverse time migration imaging of tunnels via the finite element method using an unstructured mesh
3
作者 Wang Jing Liu Jiang-Ping +2 位作者 Cheng Fei Yang Huai-Jie Huang Yi-Fan 《Applied Geophysics》 SCIE CSCD 2020年第2期267-276,316,共11页
Wavefield extrapolation is critical in reverse time migration(RTM).The finite diff erence method is primarily used to achieve wavefi eld extrapolation in case of the RTM imaging of tunnels.However,complex tunnel model... Wavefield extrapolation is critical in reverse time migration(RTM).The finite diff erence method is primarily used to achieve wavefi eld extrapolation in case of the RTM imaging of tunnels.However,complex tunnel models,including those for karsts and fault fracture zones,are constructed using regular grids with straight curves,which can cause numerical dispersion and reduce the imaging accuracy.In this study,wavefi eld extrapolation was conducted for tunnel RTM using the finite element method,wherein an unstructured mesh was considered to be the body-fi tted partition in a complex model.Further,a Poynting vector calculation equation suitable for the unstructured mesh considered in the fi nite element method was established to suppress the interference owing to low-frequency noise.The tunnel space was considered during wavefi eld extrapolation to suppress the mirror artifacts based on the fl exibility of mesh generation.Finally,the infl uence of the survey layouts(one and two sidewalls)on the tunnel imaging results was investigated.The RTM results obtained for a simple tunnel model with an inclined interface demonstrate that the method based on unstructured meshes can effectively suppress the low-frequency noise and mirror artifacts,obtaining clear imaging results.Furthermore,the two-sidewall tunnel survey layout can be used to accurately obtain the real position of the inclined interface ahead of the tunnel face.The complex tunnel numerical modeling and actual data migration results denote the eff ectiveness of the fi nite element method in which an unstructured mesh is used. 展开更多
关键词 Tunnel advanced prediction fi nite element method unstructured mesh Poynting vector mirror artifacts
下载PDF
Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms 被引量:21
4
作者 Song-Shun Lin Shui-Long Shen +1 位作者 Ning Zhang Annan Zhou 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期81-92,共12页
This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning technique... This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning techniques-back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),long-short term memory(LSTM),and gated recurrent unit(GRU)-are used.Five geological and nine operational parameters that influence the advancing speed are considered.A field case of shield tunnelling in Shenzhen City,China is analyzed using the developed models.A total of 1000 field datasets are adopted to establish intelligent models.The prediction performance of the five models is ranked as GRU>LSTM>SVM>ELM>BPNN.Moreover,the Pearson correlation coefficient(PCC)is adopted for sensitivity analysis.The results reveal that the main thrust(MT),penetration(P),foam volume(FV),and grouting volume(GV)have strong correlations with advancing speed(AS).An empirical formula is constructed based on the high-correlation influential factors and their corresponding field datasets.Finally,the prediction performances of the intelligent models and the empirical method are compared.The results reveal that all the intelligent models perform better than the empirical method. 展开更多
关键词 EPB shield machine Advancing speed prediction Intelligent models Empirical analysis Tunnel excavation
下载PDF
Simulation of Quasi-Linear Mesoscale Convective Systems in Northern China:Lightning Activities and Storm Structure 被引量:7
5
作者 Wanli LI Xiushu QIE +2 位作者 Shenming FU Debin SU Yonghai SHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第1期85-100,共16页
Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system ... Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions. 展开更多
关键词 quasi-linear mesoscale convective system Weather Research and Forecasting model advanced Regional prediction System model precipitation and non-precipitation ice
下载PDF
Reconfigurable implementation ARP based on depth threshold in 3D-HEVC 被引量:1
6
作者 Zhu Yun Zhou Jinna +3 位作者 Xie Xiaoyan Jiang Lin Wang Shuxin Shen Xubang 《High Technology Letters》 EI CAS 2021年第4期365-372,共8页
Aiming at the high computational complexity and low efficiency of the advanced residual prediction(ARP)algorithm in 3 dimension high-efficiency video coding(3D-HEVC),the relationship between the depth value and ARP is... Aiming at the high computational complexity and low efficiency of the advanced residual prediction(ARP)algorithm in 3 dimension high-efficiency video coding(3D-HEVC),the relationship between the depth value and ARP is analyzed.A fast ARP algorithm based on the depth value is proposed,which is implemented on the reconfigurable array processor developed by the project team.It uses a reconfigurable method to realize flexible switching between interview-ARP and tem-poral ARP.Experimental results show that while keeping the coding rate and the peak signal-to-noise ratio(PSNR)basically unchanged,the coding time of the six test sequences is reduced by 16.21%on average compared with HTM16.1.In contrast with non-reconfiguration,the average coding time is reduced by 52%,so the computational efficiency is improved. 展开更多
关键词 3 dimension high-efficiency video coding(3D-HEVC) advanced residual prediction(ARP) reconfigurable method
下载PDF
Realtime prediction of hard rock TBM advance rate using temporal convolutional network(TCN)with tunnel construction big data 被引量:1
7
作者 Zaobao LIU Yongchen WANG +2 位作者 Long LI Xingli FANG Junze WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第4期401-413,共13页
Real-time dynamic adjustment of the tunnel bore machine(TBM)advance rate according to the rockmachine interaction parameters is of great significance to the adaptability of TBM and its efficiency in construction.This ... Real-time dynamic adjustment of the tunnel bore machine(TBM)advance rate according to the rockmachine interaction parameters is of great significance to the adaptability of TBM and its efficiency in construction.This paper proposes a real-time predictive model of TBM advance rate using the temporal convolutional network(TCN),based on TBM construction big data.The prediction model was built using an experimental database,containing 235 data sets,established from the construction data from the Jilin Water-Diversion Tunnel Project in China.The TBM operating parameters,including total thrust,cutterhead rotation,cutterhead torque and penetration rate,are selected as the input parameters of the model.The TCN model is found outperforming the recurrent neural network(RNN)and long short-term memory(LSTM)model in predicting the TBM advance rate with much smaller values of mean absolute percentage error than the latter two.The penetration rate and cutterhead torque of the current moment have significant influence on the TBM advance rate of the next moment.On the contrary,the influence of the cutterhead rotation and total thrust is moderate.The work provides a new concept of real-time prediction of the TBM performance for highly efficient tunnel construction. 展开更多
关键词 hard rock tunnel tunnel bore machine advance rate prediction temporal convolutional networks soft computing construction big data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部