A systematic perspective on agricultural supply chain finance can offer fresh insights into its development.The high-quality development of the agricultural supply chain finance ecosystem is crucial for the comprehens...A systematic perspective on agricultural supply chain finance can offer fresh insights into its development.The high-quality development of the agricultural supply chain finance ecosystem is crucial for the comprehensive revitalization of rural areas and the realization of agricultural power.Based on the current state of development of this ecosystem,this paper identifies several bottlenecks,such as insufficient policy and technical support in the macro-environment system,weak incentives for independent circulation within the industrial environment system,and inadequate motivation for stakeholders to participate in the micro-environment system.To address these issues,this paper proposes that the visualization,digitalization,and authenticity characteristics of the“blockchain+Internet of Things”technology architecture can effectively resolve these bottlenecks.Additionally,targeted strategies are suggested to promote the high-quality development of the agricultural supply chain finance ecosystem.展开更多
DNDC, a rainfall-driven and process-oriented model of soil carbon and nitrogenbiogeochemistry, is applied t0 simulate the nitrous oxide emissions from agricultural ecosystem inSoutheast China. We simulated the soil N2...DNDC, a rainfall-driven and process-oriented model of soil carbon and nitrogenbiogeochemistry, is applied t0 simulate the nitrous oxide emissions from agricultural ecosystem inSoutheast China. We simulated the soil N2O emission during a whole rice-wheat rotation cycle(from Nov. 1, 1996 to Oct. 31, 1997) under three different conditions, which are A) no fertilizer, B)both chemical fertilizer and manure and, C) chemical fertiliser only. The processes ofN2O emission were discussed in detail by comparing the model outputs with the results from fieldmeasurement. The comparison shows that the model is good at simulating most of theNzO emission pulses and trends. Although the simulated N2O emission fluxes are generally lessthan the measured ones, the model outputs during the dryland period, especially during the wheatreviving and maturing stages in spring, are much better than those during the paddy field period.Some sensitive experiments were made by simulating the N2O emissions in spring, when there is asmallest gap between the simulated fluxes and the measured ones. Meanwhile, the effects of someimportant regulating factors, such as the rainfall N deposition by rainfall, temperature, tillage, nitrogen fertilizer and manure application on N2O emission during this period were analyzed. Fromthe analysis, we draw a conclusion that soil moisture and fertilization are the most important regulating factors while the N2O emission is sensitive to some other factors, such as temperature, manure, tillage and the wet deposition of atmospheric nitrate.展开更多
Agricultural ecosystem is one of the most important ecosystems in the world,which provides multiple ecosystem services such as grain production,climate regulation,water conservation and biodiversity.The degrada&...Agricultural ecosystem is one of the most important ecosystems in the world,which provides multiple ecosystem services such as grain production,climate regulation,water conservation and biodiversity.The degradation of ecosystem services has become an important factor that severely restricts the sustainable development of agriculture.Agroecosystem services have become the core and hot topic of ecological research.In recent years,countries and related institutions have been increasing their research on agricultural ecosystem service.Based on Web of Science(WoS)and China Knowledge Resource Integrated(CNKI)databases,the development characteristics and trends of agroecosystem services research were analyzed by bibliometric methods.The results show that:(1)The number of papers on agroecosystem services is increasing,which shows that the research on it is developing.(2)Developed countries are the main research forces in the field of ecosystem services,and the developed countries in Europe and the United States occupy the absolute leading position;China Agricultural University and the University of California in the United States are the main research institutions.(3)At present,eight research hotspots in this field are the study of ecosystem services mechanism,protection management and sustainability,sustainable development,biodiversity,land use and landscape change,value assessment,climate change,sustainable development of agriculture,ecological compensation.From the overall distribution of research hotspots in each period,the international research focuses more on the interdependence between ecosystem services and ecosystem services and human well-being,while the research in China focuses more on ecosystem services assessment.(4)In recent years,there is a big gap between China and foreign countries in the field of ecosystem services research.It is necessary to strengthen cooperation with research institutions in developed countries in Europe and the United States,and further improve the research content,research vision and research methods.展开更多
●Nematode abundance and footprint show unimodal patterns with precipitation levels.●MAP governed nematode diversity along the precipitation gradient of agroecosystem.●Soil pH determined nematode abundance and footp...●Nematode abundance and footprint show unimodal patterns with precipitation levels.●MAP governed nematode diversity along the precipitation gradient of agroecosystem.●Soil pH determined nematode abundance and footprint in low precipitation levels.Precipitation plays a crucial role in global biodiversity change across terrestrial ecosystems.Precipitation is proven to affect soil organism diversity in natural ecosystems.However,how precipitation change affects the function of the soil nematode community remains unclear in cropland ecosystems.Here,we tested soil nematode communities from different precipitation sites(300 mm to 900 mm)of the agricultural ecosystem.The abundance of total nematodes,fungivores,and plant parasites,together with the footprint of fungivores was significantly affected by mean annual precipitation(MAP)in cropland ecosystem.Plant parasites diversity and footprint showed negative relationships with MAP.The random forest suggested plant parasite footprint was the most responsive to MAP.The structural equation model revealed that MAP affected nematode abundance and footprint indirectly via soil pH;nematode diversity was affected by MAP directly.We conclude that precipitation could act as the main selection stress for nematode diversity among the large gradient of agricultural ecosystems.However,the soil pH may act as a stress factor in determining nematode community and carbon flow in the soil food web.Our study emphasized that using nematode value by trophic group would provide a deep understanding of nematode response to precipitation in cropland ecosystems.展开更多
Heavy metals(HMs)and antibiotic resistance have become serious environmental problems affecting soil and human health.Soil microorganisms play key roles in pollutant degradation and biogeochemical cycling processes;ho...Heavy metals(HMs)and antibiotic resistance have become serious environmental problems affecting soil and human health.Soil microorganisms play key roles in pollutant degradation and biogeochemical cycling processes;however,the interactions among HMs,soil microbial communities,and antibiotic resistance genes(ARGs)in agricultural soils remain unclear.Using quantitative real-time polymerase chain reaction and NovaSeq sequencing,we evaluated heavy metal contents,abundances of ARGs,soil bacterial community structure and functions,and their correlations in paddy soils at 43 sampling sites along the middle and lower reaches of the Yangtze River,central and eastern China.Our results showed the co-occurrence of HMs,ARGs,and HM resistance genes across all paddy soils.Additionally,significant positive associations were detected between HMs and resistance genes.Cadmium,czcA,and int1 were positively correlated with bacterial community diversity.The Mantel test showed that bacterial community composition and functions were significantly associated with HMs and resistance genes,such as Cd,Cr,Zn,copA,czcA,int1,and sul1.Moreover,HMs and ARGs were the major factors shaping soil bacterial communities;thus,HMs triggered proliferation of HM and antibiotic resistances by influencing the mobile genetic element(int1)and soil microbial communities.Our study revealed that HMs potentially drive the co-selection of ARGs by shifting soil bacterial community structure and functions,thereby increasing the potential risks to human health as well as ecological environment in the paddy soils along the middle and lower reaches of the Yangtze River.展开更多
Eco-agriculture is the principal measure for addressing the environmental issues caused by agriculture and an essential direction for agriculture in the future. Meanwhile, the development of eco-agriculture is insepar...Eco-agriculture is the principal measure for addressing the environmental issues caused by agriculture and an essential direction for agriculture in the future. Meanwhile, the development of eco-agriculture is inseparable from its technical support. At present, the eco-agricultural technologies commonly used in China can be divided into three categories according to their theoretical basis and practical types: the technologies used to realize the precision input of material resources, the technologies used to improve material circulation efficiency, and the technologies that use the principle of species symbiosis. Although these technologies provide essential support for developing eco-agriculture in China, there are also problems associated with their implementation, such as poor technical application and a low level of industrialization. Therefore, in the future development of eco-agriculture technology in China, the technologies producers should take the actual problems as guide and pay attention to the popularization, industrialization, and application of the technologies.展开更多
基金Phased Research Results of the Scientific Research Project of Jilin Provincial Department of Education 2024(Project No.JJKH20240264SK)。
文摘A systematic perspective on agricultural supply chain finance can offer fresh insights into its development.The high-quality development of the agricultural supply chain finance ecosystem is crucial for the comprehensive revitalization of rural areas and the realization of agricultural power.Based on the current state of development of this ecosystem,this paper identifies several bottlenecks,such as insufficient policy and technical support in the macro-environment system,weak incentives for independent circulation within the industrial environment system,and inadequate motivation for stakeholders to participate in the micro-environment system.To address these issues,this paper proposes that the visualization,digitalization,and authenticity characteristics of the“blockchain+Internet of Things”technology architecture can effectively resolve these bottlenecks.Additionally,targeted strategies are suggested to promote the high-quality development of the agricultural supply chain finance ecosystem.
文摘DNDC, a rainfall-driven and process-oriented model of soil carbon and nitrogenbiogeochemistry, is applied t0 simulate the nitrous oxide emissions from agricultural ecosystem inSoutheast China. We simulated the soil N2O emission during a whole rice-wheat rotation cycle(from Nov. 1, 1996 to Oct. 31, 1997) under three different conditions, which are A) no fertilizer, B)both chemical fertilizer and manure and, C) chemical fertiliser only. The processes ofN2O emission were discussed in detail by comparing the model outputs with the results from fieldmeasurement. The comparison shows that the model is good at simulating most of theNzO emission pulses and trends. Although the simulated N2O emission fluxes are generally lessthan the measured ones, the model outputs during the dryland period, especially during the wheatreviving and maturing stages in spring, are much better than those during the paddy field period.Some sensitive experiments were made by simulating the N2O emissions in spring, when there is asmallest gap between the simulated fluxes and the measured ones. Meanwhile, the effects of someimportant regulating factors, such as the rainfall N deposition by rainfall, temperature, tillage, nitrogen fertilizer and manure application on N2O emission during this period were analyzed. Fromthe analysis, we draw a conclusion that soil moisture and fertilization are the most important regulating factors while the N2O emission is sensitive to some other factors, such as temperature, manure, tillage and the wet deposition of atmospheric nitrate.
基金the National Key Research and Development Program of China(2016YFD0300208)National Natural Science Foundation of China(41661070)Key disciplines(construction)of ecology in the 13th Five-Year Plan of Jiangxi Agricultural University.
文摘Agricultural ecosystem is one of the most important ecosystems in the world,which provides multiple ecosystem services such as grain production,climate regulation,water conservation and biodiversity.The degradation of ecosystem services has become an important factor that severely restricts the sustainable development of agriculture.Agroecosystem services have become the core and hot topic of ecological research.In recent years,countries and related institutions have been increasing their research on agricultural ecosystem service.Based on Web of Science(WoS)and China Knowledge Resource Integrated(CNKI)databases,the development characteristics and trends of agroecosystem services research were analyzed by bibliometric methods.The results show that:(1)The number of papers on agroecosystem services is increasing,which shows that the research on it is developing.(2)Developed countries are the main research forces in the field of ecosystem services,and the developed countries in Europe and the United States occupy the absolute leading position;China Agricultural University and the University of California in the United States are the main research institutions.(3)At present,eight research hotspots in this field are the study of ecosystem services mechanism,protection management and sustainability,sustainable development,biodiversity,land use and landscape change,value assessment,climate change,sustainable development of agriculture,ecological compensation.From the overall distribution of research hotspots in each period,the international research focuses more on the interdependence between ecosystem services and ecosystem services and human well-being,while the research in China focuses more on ecosystem services assessment.(4)In recent years,there is a big gap between China and foreign countries in the field of ecosystem services research.It is necessary to strengthen cooperation with research institutions in developed countries in Europe and the United States,and further improve the research content,research vision and research methods.
基金supported by the National Science and Technology Fundamental Resources Investigation Program of China(2018FY100300)the National Natural Science Foundation of China(No.41807046)the Youth Talent Promotion Project of Jilin Province(QT202230).
文摘●Nematode abundance and footprint show unimodal patterns with precipitation levels.●MAP governed nematode diversity along the precipitation gradient of agroecosystem.●Soil pH determined nematode abundance and footprint in low precipitation levels.Precipitation plays a crucial role in global biodiversity change across terrestrial ecosystems.Precipitation is proven to affect soil organism diversity in natural ecosystems.However,how precipitation change affects the function of the soil nematode community remains unclear in cropland ecosystems.Here,we tested soil nematode communities from different precipitation sites(300 mm to 900 mm)of the agricultural ecosystem.The abundance of total nematodes,fungivores,and plant parasites,together with the footprint of fungivores was significantly affected by mean annual precipitation(MAP)in cropland ecosystem.Plant parasites diversity and footprint showed negative relationships with MAP.The random forest suggested plant parasite footprint was the most responsive to MAP.The structural equation model revealed that MAP affected nematode abundance and footprint indirectly via soil pH;nematode diversity was affected by MAP directly.We conclude that precipitation could act as the main selection stress for nematode diversity among the large gradient of agricultural ecosystems.However,the soil pH may act as a stress factor in determining nematode community and carbon flow in the soil food web.Our study emphasized that using nematode value by trophic group would provide a deep understanding of nematode response to precipitation in cropland ecosystems.
基金sponsored by the Outstanding Innovative Research Team for Molecular Enzymology and Detection in Anhui Provincial Universities,China(No.2022AH010012)the Program of Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources,China(No.swzy202001)。
文摘Heavy metals(HMs)and antibiotic resistance have become serious environmental problems affecting soil and human health.Soil microorganisms play key roles in pollutant degradation and biogeochemical cycling processes;however,the interactions among HMs,soil microbial communities,and antibiotic resistance genes(ARGs)in agricultural soils remain unclear.Using quantitative real-time polymerase chain reaction and NovaSeq sequencing,we evaluated heavy metal contents,abundances of ARGs,soil bacterial community structure and functions,and their correlations in paddy soils at 43 sampling sites along the middle and lower reaches of the Yangtze River,central and eastern China.Our results showed the co-occurrence of HMs,ARGs,and HM resistance genes across all paddy soils.Additionally,significant positive associations were detected between HMs and resistance genes.Cadmium,czcA,and int1 were positively correlated with bacterial community diversity.The Mantel test showed that bacterial community composition and functions were significantly associated with HMs and resistance genes,such as Cd,Cr,Zn,copA,czcA,int1,and sul1.Moreover,HMs and ARGs were the major factors shaping soil bacterial communities;thus,HMs triggered proliferation of HM and antibiotic resistances by influencing the mobile genetic element(int1)and soil microbial communities.Our study revealed that HMs potentially drive the co-selection of ARGs by shifting soil bacterial community structure and functions,thereby increasing the potential risks to human health as well as ecological environment in the paddy soils along the middle and lower reaches of the Yangtze River.
基金The Consulting Research Project of Chinese Academy of Engineering(2021-XBZD-8).
文摘Eco-agriculture is the principal measure for addressing the environmental issues caused by agriculture and an essential direction for agriculture in the future. Meanwhile, the development of eco-agriculture is inseparable from its technical support. At present, the eco-agricultural technologies commonly used in China can be divided into three categories according to their theoretical basis and practical types: the technologies used to realize the precision input of material resources, the technologies used to improve material circulation efficiency, and the technologies that use the principle of species symbiosis. Although these technologies provide essential support for developing eco-agriculture in China, there are also problems associated with their implementation, such as poor technical application and a low level of industrialization. Therefore, in the future development of eco-agriculture technology in China, the technologies producers should take the actual problems as guide and pay attention to the popularization, industrialization, and application of the technologies.