Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be d...Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be designed with utmost care and attention in terms of material types and thickness configurations. In particular, the selection of thickness at each location of the aircraft wing skin is the most consequential task for aircraft designers. To accomplish this, we present discrete mathematical programming models to obtain optimal thicknesses either to minimize weight or to maximize reliability. We present theoretical results for the decomposition of these discrete mathematical programming models to reduce computer memory requirements and facilitate the use of dynamic programming for design purposes. In particular, a decomposed version of the weight minimization problem is solved for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location to yield an optimal minimum weight design.展开更多
Excessive vibration of aircraft wings during flight is harmful and may cause propagation of existing cracks in the material, leading to catastrophic failures as a result of material fatigue. This study investigates th...Excessive vibration of aircraft wings during flight is harmful and may cause propagation of existing cracks in the material, leading to catastrophic failures as a result of material fatigue. This study investigates the variations of modal characteristics of aircraft wings with respect to changes in the structural configurations. We develop parametric Computer-Aided Design (CAD) models to capture new design intend on the aircraft wing architectures. Subsequent Finite Element Analysis (FEA) based vibration analysis is performed to study the effects of architecture changes on the wing’s natural frequencies and mode shapes. It is concluded that the spar placement and the number of ribs have significant influence on the wing’s natural vibration properties. Integrating CAD modelling and FEA vibration analysis enables designers to develop alternative wing architectures to implement design requirements in the preliminary design stage.展开更多
A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the s...A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the structural weight of the aircraft wing. The aircraft wing skin consists of many different types of material and thickness configurations at various locations. Selecting a thickness for each location is perhaps the most significant design task. In this paper, we formulate discrete mathematical programming models to determine the optimal thicknesses for three different criteria: maximize reliability, minimize weight, and achieve a trade-off between maximizing reliability and minimizing weight. These three model formulations are generalized discrete resource-allocation problems, which lend themselves well to the dynamic programming approach. Consequently, we use the dynamic programming method to solve these model formulations. To illustrate our approach, an example is solved in which dynamic programming yields a minimum weight design as well as a trade-off curve for weight versus reliability for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location.展开更多
In this project,the miniaturization of the aircraft was realized under the premise of strong maneuverability,high concealability,and driving a certain load,and the flight mode and structural characteristics of birds w...In this project,the miniaturization of the aircraft was realized under the premise of strong maneuverability,high concealability,and driving a certain load,and the flight mode and structural characteristics of birds were imitated.A small bionic flapping wing aircraft was built.The flapping of the wing was realized by the crank slider mechanism,and the sizes of each part were calculated according to the bionics formula.The wingspan was 360.37 mm,the body width was 22 mm,the body length was 300 mm,the wing area was 0.05 m^(2),the flapping amplitude was 71°.ADAMS software was used to simulate the dynamics of the designed aircraft,and the variation of flapping amplitude and angular velocity during the movement of the aircraft was obtained,which verified the feasibility of the mechanism.The prototype aircraft was made for flight test,and the designed bionic flapping wing aircraft achieved the expected effect.It provides a theoretical basis and data support for the design and manufacture of small flapping wing aircraft.展开更多
A novel 6-degree of freedom (DOF) posture alignment system, based on 3-DOF positioners, is presented for the assembly of aircraft wings. Each positioner is connected with the wing through a rotational and adsorptive h...A novel 6-degree of freedom (DOF) posture alignment system, based on 3-DOF positioners, is presented for the assembly of aircraft wings. Each positioner is connected with the wing through a rotational and adsorptive half-ball shaped end-effector, and the positioners together with the wing are considered as a 3-PPPS (P denotes a prismatic joint and S denotes a spherical joint) redundantly actuated parallel mechanism. The kinematic model of this system is established and a trajectory planning method is introduced. A complete analysis of inverse dynamics is carried out with the Newton-Euler algorithm, which is used to find the desired actuating torque in the design and path planning phase. Simulation analysis of the displacement and actuating torque of each joint of the positioners based on inverse kinematics and dynamics is conducted, and the results show that the system is feasible for the posture alignment of aircraft wings.展开更多
The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences base...The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences based on the maximum likelihood estimated criterion to adapt the system noise covariance matrix and the measurement noise covariance matrix on line, which is used to estimate the misalignment if the model of wing flexure of the aircraft is unknown. From a number of simulations, it is shown that the accuracy of the adaptive Kalman filter is better than the conventional Kalman filter, and the erroneous misalignment models of the wing flexure of aircraft will cause bad estimation results of Kalman filter using attitude match method.展开更多
hree kinds of devices of drag reduction are presented swept wingtip,stage by stage swept wingtip and downbend wingtip. The effects of changing geometryparameters of the swept wingtip on the drag reducing are also pres...hree kinds of devices of drag reduction are presented swept wingtip,stage by stage swept wingtip and downbend wingtip. The effects of changing geometryparameters of the swept wingtip on the drag reducing are also presented. Wind-tunnelexperiment results indicate that a properly designed swept wingtip results in an incre-ment in induced efficiency of 4%~ 7% and that swept wingtip can increase longitudinalstatic-stability. Water-tunnel experiment results indicate that the reason for drag re-ducing of swept wingtip is that when the angle of attack is not zero, the strong end vor-tex of the wing is weakened by the combined effect of the leading edge and trailing edgevortices of the swept wingtip.展开更多
An effective method of optimal design of wing configuration is provided. The SUMT (sequential unconstained minimization technique) method is a good technique for solving the nonlinear programming. The application of p...An effective method of optimal design of wing configuration is provided. The SUMT (sequential unconstained minimization technique) method is a good technique for solving the nonlinear programming. The application of penalty in optimal design of wing configuration has been solved well. The present method for the aerodynamic calculation is the combination of both the nonlinear panel method and the suction analogy method of vortexlift spanwise distribution on large swept wing-tip. The calculation results are in good agreement with experimental data. According to the computation and experiment,the mechanism of the increased lift and reduced drag about the sheared wing-tip wing has been analyzed, and some opinions of interest are proposed.展开更多
Modern day VTOL fixed-wing aircraft based on quadplane design is relative<span style="font-family:Verdana;">ly simple and reliable due to lack of complex mechanical components</span><span styl...Modern day VTOL fixed-wing aircraft based on quadplane design is relative<span style="font-family:Verdana;">ly simple and reliable due to lack of complex mechanical components</span><span style="font-family:Verdana;"> com</span><span style="font-family:Verdana;">pared to tilt-wings or tilt-rotors in the pre-80’s era. Radio-controlled </span><span style="font-family:Verdana;">aerobatic airplanes have thrust-to-weight ratio of greater than unity and are capable of performing a range of impressive maneuvers including the so-called harrier maneuver. We hereby present a new maneuver known as the retarded harrier </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">that is applicable to un/manned fixed-wing aircraft for achieving VTOL flight with a better forward flight performance than a quadplane in terms of weight, speed and esthetics.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> An airplane with tandem roto-stabilizers is also presented as an efficient airframe to achieve VTOL via retarded harrier maneuver, and detailed analysis is given for hovering at 45° and 60° and comparison is made against the widely adopted quadplane. This work also includes experimental demonstration of retarded harrier maneuver using a small remotely pilot airplane of wingspan 650 mm.</span></span></span>展开更多
文摘Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be designed with utmost care and attention in terms of material types and thickness configurations. In particular, the selection of thickness at each location of the aircraft wing skin is the most consequential task for aircraft designers. To accomplish this, we present discrete mathematical programming models to obtain optimal thicknesses either to minimize weight or to maximize reliability. We present theoretical results for the decomposition of these discrete mathematical programming models to reduce computer memory requirements and facilitate the use of dynamic programming for design purposes. In particular, a decomposed version of the weight minimization problem is solved for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location to yield an optimal minimum weight design.
文摘Excessive vibration of aircraft wings during flight is harmful and may cause propagation of existing cracks in the material, leading to catastrophic failures as a result of material fatigue. This study investigates the variations of modal characteristics of aircraft wings with respect to changes in the structural configurations. We develop parametric Computer-Aided Design (CAD) models to capture new design intend on the aircraft wing architectures. Subsequent Finite Element Analysis (FEA) based vibration analysis is performed to study the effects of architecture changes on the wing’s natural frequencies and mode shapes. It is concluded that the spar placement and the number of ribs have significant influence on the wing’s natural vibration properties. Integrating CAD modelling and FEA vibration analysis enables designers to develop alternative wing architectures to implement design requirements in the preliminary design stage.
文摘A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the structural weight of the aircraft wing. The aircraft wing skin consists of many different types of material and thickness configurations at various locations. Selecting a thickness for each location is perhaps the most significant design task. In this paper, we formulate discrete mathematical programming models to determine the optimal thicknesses for three different criteria: maximize reliability, minimize weight, and achieve a trade-off between maximizing reliability and minimizing weight. These three model formulations are generalized discrete resource-allocation problems, which lend themselves well to the dynamic programming approach. Consequently, we use the dynamic programming method to solve these model formulations. To illustrate our approach, an example is solved in which dynamic programming yields a minimum weight design as well as a trade-off curve for weight versus reliability for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location.
文摘In this project,the miniaturization of the aircraft was realized under the premise of strong maneuverability,high concealability,and driving a certain load,and the flight mode and structural characteristics of birds were imitated.A small bionic flapping wing aircraft was built.The flapping of the wing was realized by the crank slider mechanism,and the sizes of each part were calculated according to the bionics formula.The wingspan was 360.37 mm,the body width was 22 mm,the body length was 300 mm,the wing area was 0.05 m^(2),the flapping amplitude was 71°.ADAMS software was used to simulate the dynamics of the designed aircraft,and the variation of flapping amplitude and angular velocity during the movement of the aircraft was obtained,which verified the feasibility of the mechanism.The prototype aircraft was made for flight test,and the designed bionic flapping wing aircraft achieved the expected effect.It provides a theoretical basis and data support for the design and manufacture of small flapping wing aircraft.
文摘A novel 6-degree of freedom (DOF) posture alignment system, based on 3-DOF positioners, is presented for the assembly of aircraft wings. Each positioner is connected with the wing through a rotational and adsorptive half-ball shaped end-effector, and the positioners together with the wing are considered as a 3-PPPS (P denotes a prismatic joint and S denotes a spherical joint) redundantly actuated parallel mechanism. The kinematic model of this system is established and a trajectory planning method is introduced. A complete analysis of inverse dynamics is carried out with the Newton-Euler algorithm, which is used to find the desired actuating torque in the design and path planning phase. Simulation analysis of the displacement and actuating torque of each joint of the positioners based on inverse kinematics and dynamics is conducted, and the results show that the system is feasible for the posture alignment of aircraft wings.
文摘The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences based on the maximum likelihood estimated criterion to adapt the system noise covariance matrix and the measurement noise covariance matrix on line, which is used to estimate the misalignment if the model of wing flexure of the aircraft is unknown. From a number of simulations, it is shown that the accuracy of the adaptive Kalman filter is better than the conventional Kalman filter, and the erroneous misalignment models of the wing flexure of aircraft will cause bad estimation results of Kalman filter using attitude match method.
文摘hree kinds of devices of drag reduction are presented swept wingtip,stage by stage swept wingtip and downbend wingtip. The effects of changing geometryparameters of the swept wingtip on the drag reducing are also presented. Wind-tunnelexperiment results indicate that a properly designed swept wingtip results in an incre-ment in induced efficiency of 4%~ 7% and that swept wingtip can increase longitudinalstatic-stability. Water-tunnel experiment results indicate that the reason for drag re-ducing of swept wingtip is that when the angle of attack is not zero, the strong end vor-tex of the wing is weakened by the combined effect of the leading edge and trailing edgevortices of the swept wingtip.
文摘An effective method of optimal design of wing configuration is provided. The SUMT (sequential unconstained minimization technique) method is a good technique for solving the nonlinear programming. The application of penalty in optimal design of wing configuration has been solved well. The present method for the aerodynamic calculation is the combination of both the nonlinear panel method and the suction analogy method of vortexlift spanwise distribution on large swept wing-tip. The calculation results are in good agreement with experimental data. According to the computation and experiment,the mechanism of the increased lift and reduced drag about the sheared wing-tip wing has been analyzed, and some opinions of interest are proposed.
文摘Modern day VTOL fixed-wing aircraft based on quadplane design is relative<span style="font-family:Verdana;">ly simple and reliable due to lack of complex mechanical components</span><span style="font-family:Verdana;"> com</span><span style="font-family:Verdana;">pared to tilt-wings or tilt-rotors in the pre-80’s era. Radio-controlled </span><span style="font-family:Verdana;">aerobatic airplanes have thrust-to-weight ratio of greater than unity and are capable of performing a range of impressive maneuvers including the so-called harrier maneuver. We hereby present a new maneuver known as the retarded harrier </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">that is applicable to un/manned fixed-wing aircraft for achieving VTOL flight with a better forward flight performance than a quadplane in terms of weight, speed and esthetics.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> An airplane with tandem roto-stabilizers is also presented as an efficient airframe to achieve VTOL via retarded harrier maneuver, and detailed analysis is given for hovering at 45° and 60° and comparison is made against the widely adopted quadplane. This work also includes experimental demonstration of retarded harrier maneuver using a small remotely pilot airplane of wingspan 650 mm.</span></span></span>