ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring an...ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring and alarming system based on Android smart phone. In our system, an ECG device collects the ECG signal and transmits it to an Android phone. The Android phone detects alarms which come from the ECG devices. When alarms occur, Android phone will capture the ECG images and the details about the alarms, and sends them to the cloud Alarm Server (AS). Once received, AS push the messages to doctors’ phone, so the doctors could see the ECG images and alarm details on their mobile phone. In our system, high resolution ECG pictures are transmitted to doctors’ phone in a user-friendly way, which can help doctors keep track of their patient’s condition easily.展开更多
Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,f...Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset.展开更多
A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which h...A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.展开更多
The Doppler weather radar fault judging system and remote monitoring platform were introduced.Through the real-time scanning of radar alarm information coding,the platform can realize dynamic monitoring and real-time ...The Doppler weather radar fault judging system and remote monitoring platform were introduced.Through the real-time scanning of radar alarm information coding,the platform can realize dynamic monitoring and real-time alarm of Doppler radar equipment components,so as to improve the reliability of equipment operation,and truly realize"unattended"remote monitoring.展开更多
Sensors for fire alarms require a high level of predictive variables to ensure accurate detection, injury prevention, and loss prevention. Bayesian networks can aid in enhancing early fire detection capabilities and r...Sensors for fire alarms require a high level of predictive variables to ensure accurate detection, injury prevention, and loss prevention. Bayesian networks can aid in enhancing early fire detection capabilities and reducing the frequency of erroneous fire alerts, thereby enhancing the effectiveness of numerous safety monitoring systems. This research explores the development of optimized probabilistic graphic models for the discretization thresholds of alarm system predictor variables. The study presents a statistical model framework that increases the efficacy of fire detection by predicting the discretization thresholds of alarm system predictor variable fluctuations used to detect the onset of fire. The work applies the Bayesian networks and probabilistic visual models to reveal the specific characteristics required to cope with fire detection strategies and patterns. The adopted methodology utilizes a combination of prior knowledge and statistical data to draw conclusions from observations. Utilizing domain knowledge to compute conditional dependencies between network variables enabled predictions to be made through the application of specialized analytical and simulation techniques.展开更多
Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis i...Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
Functionally referential signals are a complex form of communication that conveys information about the external environment.Such signals have been found in a range of mammal and bird species and have helped us unders...Functionally referential signals are a complex form of communication that conveys information about the external environment.Such signals have been found in a range of mammal and bird species and have helped us understand the complexities of animal communication.Corvids are well known for their extraordinary cognitive abilities,but relatively little attention has been paid to their vocal function.Here,we investigated the functionally referential signals of a cooperatively breeding corvid species,Azure-winged Magpie(Cyanopica cyanus).Through field observations,we suggest that Azure-winged Magpie uses referential alarm calls to distinguish two types of threats:’rasp’ calls for terrestrial threats and ’chatter’ calls for aerial threats.A playback experiment revealed that Azure-winged Magpies responded to the two call types with qualitatively different behaviors.They sought cover by flying into the bushes in response to the ’chatter’ calls,and flew to or stayed at higher positions in response to ’rasp’ calls,displaying a shorter response time to ’chatter’ calls.Significant differences in acoustic structure were found between the two types of calls.Given the extensive cognitive abilities of corvids and the fact that referential signals were once thought to be unique to primates,these findings are important for expanding our understanding of social communication and language evolution.展开更多
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low ...Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios.展开更多
Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two line...Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.展开更多
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light...Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.展开更多
Aim To achieve multitask data procssing in a wireless alarm system by computer. Methods The alarm system was composed of hardware and software. The hardware was composed of a master master computer and slave transmi...Aim To achieve multitask data procssing in a wireless alarm system by computer. Methods The alarm system was composed of hardware and software. The hardware was composed of a master master computer and slave transmitters. On urgent ugent occasion, one or more of the transmitters transmitted alarm signals and the master computer received the signals; interruption, residence, graph and word processing were utilized in software to achieve multitiask data processing . Results The main computer can conduct precise and quick multitask data procesing in any condition so long as alarm signals are received. The processing speed is higher than ordinary alarm System. Conclusion The master computer can conduct safe and quick multitask data processing by way of reliable design of software and hardware , so there is no need of special processor.展开更多
Objective:To explore the clinical rationale of critical care nurses for personalizing monitor alarms.One of the most crucial jobs assigned to critical care nurses is monitoring patients'physiological indicators an...Objective:To explore the clinical rationale of critical care nurses for personalizing monitor alarms.One of the most crucial jobs assigned to critical care nurses is monitoring patients'physiological indicators and carrying out the necessary associated interventions.Successful use of equipment in the nursing practice environment will be improved by a thorough understanding of the nurse's approach to alarm configuration.Methods:A mixed-method design integrating quantitative and qualitative components was used.The sample of this study recruited a convenience sample of 60 nurses who have worked in critical care areas.This study took place at Lebanese American University Medical Center Rizk Hospital,utilizing a semi-structured interview with participants.Results:The study demonstrated the high incidence of nuisance alarms and the desensitization of critical care nurses to vital ones.According to the nurses,frequent false alarms and a shortage of staff are the 2 main causes of alarm desensitization.Age was significantly associated with the perception of Smart alarms,according to the data(P=0.03).Four interconnected themes and subcategories that reflect the clinical reasoning process for alarm customization were developed as a result of the study's qualitative component:(1)unit alarm environment;(2)nursing style;(3)motivation to customize;and(4)clinical and technological customization.Conclusions:According to this study,nurses believe that alarms are valuable.However,a qualitative analysis of the experiences revealed that customization has been severely limited since the healthcare team depends on nurses to complete these tasks independently.Additionally,a staffing shortage and lack of technical training at the start of placement have also hindered customization.展开更多
To improve the reliability of the light emitting diode(LED)signal lamp filament current monitoring alarm instrument for metro systems,a new type of hot standby online monitoring apparatus was developed which is based ...To improve the reliability of the light emitting diode(LED)signal lamp filament current monitoring alarm instrument for metro systems,a new type of hot standby online monitoring apparatus was developed which is based on synchronous transmission data(STD)bus technology.In this system,a double hot standby mode can be achieved by adopting bus arbitration.In addition,to detect the effective value of alternating current which is from 0 to 200 mA in the signal lamp lighting circuit,a precision rectifier signal conditioning circuit and an isolated acquisition circuit were designed.This new type of alarm instrument has high detection accuracy and could meet the functional requirements for metro signal systems after comparing it with some industry products that were applied on the spot.展开更多
In order to meet the self-powered requirement by microelectronic products and micro-electrostatic vibration generator and avoid the environmental pollution caused by waste batteries,many countries have started their r...In order to meet the self-powered requirement by microelectronic products and micro-electrostatic vibration generator and avoid the environmental pollution caused by waste batteries,many countries have started their researches on piezoelectric power generation based on the researches on the recovery device of rotational energy of piezoelectric effect.The piezoelectric power generation has many advantages compared with other generation patterns.The piezoelectric power generation has become a new field of research.In this study,the piezoelectric vibrators were used to convert energy.According to the requirements by tire pressure alarm system,the energy conversion and storage were researched and analyzed by using the passive sensing device used in automotive inspection.The converted energy was then provided to the alarm,achieving intelligent control and utilization of piezoelectric vibrators.展开更多
Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for...Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints.展开更多
With principles of reliability, independence, practicality and economical effi- ciency, a set of intelligent fire alarm system based on AVRmega128 single chip microcomputer was designed to solve problems of fire alarm...With principles of reliability, independence, practicality and economical effi- ciency, a set of intelligent fire alarm system based on AVRmega128 single chip microcomputer was designed to solve problems of fire alarm system in many large- scale warehouses. Using advanced flame sensor, 485 bus communication, computer interactive software and related peripheral devices, this intelligent fire alarm system has functions of sound-light alarm and intelligent fire extinguishing. The human-com- puter interactive software was adopted for the remote control of the alarm main control panel through the 485 bus communication. This design of intelligent fire alarm system shows high reference and practical value to the development of intel- ligent alarm products with high integration and high reliability.展开更多
Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.Firs...Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.展开更多
Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalizati...Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.展开更多
In this work a review of existing fire-detector types has been carried out along with the development of a low cost, portable, and reliable microcontroller based automated fire alarm system for remotely alerting any f...In this work a review of existing fire-detector types has been carried out along with the development of a low cost, portable, and reliable microcontroller based automated fire alarm system for remotely alerting any fire incidents in household or industrial premises. The aim of the system designed is to alert the distant property-owner efficiently and quickly by sending short message (SMS) via GSM network. A Linear integrated temperature sensor detects temperature beyond preset value whereas semiconductor type sensor detects presence of smoke or gas from fire hazards. The sensor units are connected via common data line to ATMega8L AVR microcontroller. A SIM300CZ GSM kit based network module, capable of operating in standard GSM bands, has been used to send alert messages. The system is implemented on printed circuit board (PCB) and tested under different experimental conditions to evaluate its performances.展开更多
文摘ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring and alarming system based on Android smart phone. In our system, an ECG device collects the ECG signal and transmits it to an Android phone. The Android phone detects alarms which come from the ECG devices. When alarms occur, Android phone will capture the ECG images and the details about the alarms, and sends them to the cloud Alarm Server (AS). Once received, AS push the messages to doctors’ phone, so the doctors could see the ECG images and alarm details on their mobile phone. In our system, high resolution ECG pictures are transmitted to doctors’ phone in a user-friendly way, which can help doctors keep track of their patient’s condition easily.
文摘Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset.
基金supported by the Natural Science Foundation of China(22075043,21875034,61704093)。
文摘A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.
文摘The Doppler weather radar fault judging system and remote monitoring platform were introduced.Through the real-time scanning of radar alarm information coding,the platform can realize dynamic monitoring and real-time alarm of Doppler radar equipment components,so as to improve the reliability of equipment operation,and truly realize"unattended"remote monitoring.
文摘Sensors for fire alarms require a high level of predictive variables to ensure accurate detection, injury prevention, and loss prevention. Bayesian networks can aid in enhancing early fire detection capabilities and reducing the frequency of erroneous fire alerts, thereby enhancing the effectiveness of numerous safety monitoring systems. This research explores the development of optimized probabilistic graphic models for the discretization thresholds of alarm system predictor variables. The study presents a statistical model framework that increases the efficacy of fire detection by predicting the discretization thresholds of alarm system predictor variable fluctuations used to detect the onset of fire. The work applies the Bayesian networks and probabilistic visual models to reveal the specific characteristics required to cope with fire detection strategies and patterns. The adopted methodology utilizes a combination of prior knowledge and statistical data to draw conclusions from observations. Utilizing domain knowledge to compute conditional dependencies between network variables enabled predictions to be made through the application of specialized analytical and simulation techniques.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2006AA04Z416)the National Natural Science Foundation of China (No50538020)
文摘Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金funded by the National Natural Science Foundation of China (Grant No. 32170516, 31872243 to Y.Z.)。
文摘Functionally referential signals are a complex form of communication that conveys information about the external environment.Such signals have been found in a range of mammal and bird species and have helped us understand the complexities of animal communication.Corvids are well known for their extraordinary cognitive abilities,but relatively little attention has been paid to their vocal function.Here,we investigated the functionally referential signals of a cooperatively breeding corvid species,Azure-winged Magpie(Cyanopica cyanus).Through field observations,we suggest that Azure-winged Magpie uses referential alarm calls to distinguish two types of threats:’rasp’ calls for terrestrial threats and ’chatter’ calls for aerial threats.A playback experiment revealed that Azure-winged Magpies responded to the two call types with qualitatively different behaviors.They sought cover by flying into the bushes in response to the ’chatter’ calls,and flew to or stayed at higher positions in response to ’rasp’ calls,displaying a shorter response time to ’chatter’ calls.Significant differences in acoustic structure were found between the two types of calls.Given the extensive cognitive abilities of corvids and the fact that referential signals were once thought to be unique to primates,these findings are important for expanding our understanding of social communication and language evolution.
基金supports from the National Natural Science Foundation of China(61801525)the independent fund of the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-sen University)under grant No.OEMT-2022-ZRC-05+3 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2023-3-5))the Foundation of the state key Laboratory of Transducer Technology(No.SKT2301),Shenzhen Science and Technology Program(JCYJ20220530161809020&JCYJ20220818100415033)the Young Top Talent of Fujian Young Eagle Program of Fujian Province and Natural Science Foundation of Fujian Province(2023J02013)National Key R&D Program of China(2022YFB2802051).
文摘Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios.
基金supported by the National Natural Science Foundation of China(61971432)Taishan Scholar Project of Shandong Province(tsqn201909156)the Outstanding Youth Innovation Team Program of University in Shandong Province(2019KJN031)。
文摘Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(LH2022F049).
文摘Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.
文摘Aim To achieve multitask data procssing in a wireless alarm system by computer. Methods The alarm system was composed of hardware and software. The hardware was composed of a master master computer and slave transmitters. On urgent ugent occasion, one or more of the transmitters transmitted alarm signals and the master computer received the signals; interruption, residence, graph and word processing were utilized in software to achieve multitiask data processing . Results The main computer can conduct precise and quick multitask data procesing in any condition so long as alarm signals are received. The processing speed is higher than ordinary alarm System. Conclusion The master computer can conduct safe and quick multitask data processing by way of reliable design of software and hardware , so there is no need of special processor.
文摘Objective:To explore the clinical rationale of critical care nurses for personalizing monitor alarms.One of the most crucial jobs assigned to critical care nurses is monitoring patients'physiological indicators and carrying out the necessary associated interventions.Successful use of equipment in the nursing practice environment will be improved by a thorough understanding of the nurse's approach to alarm configuration.Methods:A mixed-method design integrating quantitative and qualitative components was used.The sample of this study recruited a convenience sample of 60 nurses who have worked in critical care areas.This study took place at Lebanese American University Medical Center Rizk Hospital,utilizing a semi-structured interview with participants.Results:The study demonstrated the high incidence of nuisance alarms and the desensitization of critical care nurses to vital ones.According to the nurses,frequent false alarms and a shortage of staff are the 2 main causes of alarm desensitization.Age was significantly associated with the perception of Smart alarms,according to the data(P=0.03).Four interconnected themes and subcategories that reflect the clinical reasoning process for alarm customization were developed as a result of the study's qualitative component:(1)unit alarm environment;(2)nursing style;(3)motivation to customize;and(4)clinical and technological customization.Conclusions:According to this study,nurses believe that alarms are valuable.However,a qualitative analysis of the experiences revealed that customization has been severely limited since the healthcare team depends on nurses to complete these tasks independently.Additionally,a staffing shortage and lack of technical training at the start of placement have also hindered customization.
文摘To improve the reliability of the light emitting diode(LED)signal lamp filament current monitoring alarm instrument for metro systems,a new type of hot standby online monitoring apparatus was developed which is based on synchronous transmission data(STD)bus technology.In this system,a double hot standby mode can be achieved by adopting bus arbitration.In addition,to detect the effective value of alternating current which is from 0 to 200 mA in the signal lamp lighting circuit,a precision rectifier signal conditioning circuit and an isolated acquisition circuit were designed.This new type of alarm instrument has high detection accuracy and could meet the functional requirements for metro signal systems after comparing it with some industry products that were applied on the spot.
基金Supported by Natural Science Foundation of Hebei Province(E2013204069)Scienceand Technology Research and Development Program of Baoding City(13ZG020+4 种基金13ZF005)Science and Engineering Fund of Agricultural University of Hebei(LG20120204LG201401)College Students’Innovation and Entrepreneurship Fund of Agricultural University of Hebei(201310086011cxzr2014031)~~
文摘In order to meet the self-powered requirement by microelectronic products and micro-electrostatic vibration generator and avoid the environmental pollution caused by waste batteries,many countries have started their researches on piezoelectric power generation based on the researches on the recovery device of rotational energy of piezoelectric effect.The piezoelectric power generation has many advantages compared with other generation patterns.The piezoelectric power generation has become a new field of research.In this study,the piezoelectric vibrators were used to convert energy.According to the requirements by tire pressure alarm system,the energy conversion and storage were researched and analyzed by using the passive sensing device used in automotive inspection.The converted energy was then provided to the alarm,achieving intelligent control and utilization of piezoelectric vibrators.
基金Project(2009BAG15B03) supported by the National Science and Technology Ministry of ChinaProjects(51178100, 51078080) supported by the National Natural Science Foundation of China+1 种基金Project(BK2011141) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(12KB02) supported by the Open Fund of the Key Laboratory for Safety Control of Bridge Engineering(Changsha University of Science and Technology), Ministry of Education, China
文摘Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints.
基金Supported by the National Natural Science Foundation of China(11275164)~~
文摘With principles of reliability, independence, practicality and economical effi- ciency, a set of intelligent fire alarm system based on AVRmega128 single chip microcomputer was designed to solve problems of fire alarm system in many large- scale warehouses. Using advanced flame sensor, 485 bus communication, computer interactive software and related peripheral devices, this intelligent fire alarm system has functions of sound-light alarm and intelligent fire extinguishing. The human-com- puter interactive software was adopted for the remote control of the alarm main control panel through the 485 bus communication. This design of intelligent fire alarm system shows high reference and practical value to the development of intel- ligent alarm products with high integration and high reliability.
基金Project(51078080)supported by the National Natural Science Foundation of ChinaProject(20130969010)supported by Aeronautical Science Foundation of China+1 种基金Project(2011Y03-6)supported by Traffic Transportation Technology Project of Jiangsu Province,ChinaProject(BK2012562)supported by the Natural Science Foundation of Jiangsu Province,China
文摘Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.
基金Supported by the National Natural Science Foundation of China(61473026,61104131)the Fundamental Research Funds for the Central Universities(JD1413)
文摘Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.
文摘In this work a review of existing fire-detector types has been carried out along with the development of a low cost, portable, and reliable microcontroller based automated fire alarm system for remotely alerting any fire incidents in household or industrial premises. The aim of the system designed is to alert the distant property-owner efficiently and quickly by sending short message (SMS) via GSM network. A Linear integrated temperature sensor detects temperature beyond preset value whereas semiconductor type sensor detects presence of smoke or gas from fire hazards. The sensor units are connected via common data line to ATMega8L AVR microcontroller. A SIM300CZ GSM kit based network module, capable of operating in standard GSM bands, has been used to send alert messages. The system is implemented on printed circuit board (PCB) and tested under different experimental conditions to evaluate its performances.