Existing solutions against wiretapping attacks for network coding either bring significant bandwidth overhead or incur a high computational complexity.In order to reduce the security overhead of the existing solutions...Existing solutions against wiretapping attacks for network coding either bring significant bandwidth overhead or incur a high computational complexity.In order to reduce the security overhead of the existing solutions for securing network coding,a novel securing network coding paradigm is presented relying on two coding models:intra-generation coding and inter-generation coding.The basic idea to secure network coding using intra-generation coding is to limit the encryption operations for each generation,and then subject the scrambled and the remaining original source vectors to a linear transformation.This method is then generalized seamlessly using inter-generation coding by further exploiting the algebraic structure of network coding.We show that the proposed schemes have properties of low-complexity security,little bandwidth consumption,and high efficiency in integrating with the existing security techniques effectively.展开更多
Existing works for securing network coding against wiretapping either incur high coding complexity or bring large bandwidth overhead. For exploiting the lightweight security mechanism for resource-constrained networks...Existing works for securing network coding against wiretapping either incur high coding complexity or bring large bandwidth overhead. For exploiting the lightweight security mechanism for resource-constrained networks, an efficient secure coding scheme is proposed in conjunction with the inherent mix- ing characteristic of network coding. The key idea is to minimize the randomizing operations to the entire plaintext data. The pro- posed scheme is shown to have properties of lightweight security complexity and lower communication overhead compared with the existing traditional solutions, and can be easy in implementation and combination with classical cryptography techniques.展开更多
Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vec...Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.展开更多
We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the in-formation rate R = 1/2, by our ...We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the in-formation rate R = 1/2, by our constructive lower bound, the relative minimum distance δ≈ 0.0595 (for GV bound, δ≈ 0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11371290,No.61271174,No. 61301178)the Science and Technology Innovation Foundation of Xi'an(Grant No. CXY1352WL28)
文摘Existing solutions against wiretapping attacks for network coding either bring significant bandwidth overhead or incur a high computational complexity.In order to reduce the security overhead of the existing solutions for securing network coding,a novel securing network coding paradigm is presented relying on two coding models:intra-generation coding and inter-generation coding.The basic idea to secure network coding using intra-generation coding is to limit the encryption operations for each generation,and then subject the scrambled and the remaining original source vectors to a linear transformation.This method is then generalized seamlessly using inter-generation coding by further exploiting the algebraic structure of network coding.We show that the proposed schemes have properties of low-complexity security,little bandwidth consumption,and high efficiency in integrating with the existing security techniques effectively.
基金Supported by the National Natural Science Foundation of China(11371290,61301178)the Science and Technology Innovation Foundation of Xi'an(CXY1352WL28,CXY1352WL27)
文摘Existing works for securing network coding against wiretapping either incur high coding complexity or bring large bandwidth overhead. For exploiting the lightweight security mechanism for resource-constrained networks, an efficient secure coding scheme is proposed in conjunction with the inherent mix- ing characteristic of network coding. The key idea is to minimize the randomizing operations to the entire plaintext data. The pro- posed scheme is shown to have properties of lightweight security complexity and lower communication overhead compared with the existing traditional solutions, and can be easy in implementation and combination with classical cryptography techniques.
基金supported by National Natural Science Foundation of China (Grant No. 10871068)
文摘Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.
基金supported by the China Scholarship Council, National Natural Science Foundation of China(Grant No.10571026)the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of Chinathe Specialized Research Fund for the Doctoral Program of Higher Education (GrantNo. 20060286006)
文摘We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the in-formation rate R = 1/2, by our constructive lower bound, the relative minimum distance δ≈ 0.0595 (for GV bound, δ≈ 0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.