期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于蚁群算法的民用飞机设备架智能布置设计研究
1
作者 腾杨刚 张海洋 +1 位作者 葛桂林 侯严庭 《民用飞机设计与研究》 2024年第2期51-57,共7页
传统的基于流程的民用飞机设备架总体设计工作,需要设计师借助结构和系统数字样机经过反复协调迭代形成设备架布置方案,严重依赖于设计师的工程经验,方案迭代速度慢且方案的优劣评价较难量化,这对飞机研制周期和整机经济性都有较大的影... 传统的基于流程的民用飞机设备架总体设计工作,需要设计师借助结构和系统数字样机经过反复协调迭代形成设备架布置方案,严重依赖于设计师的工程经验,方案迭代速度慢且方案的优劣评价较难量化,这对飞机研制周期和整机经济性都有较大的影响。本文对蚁群算法状态转移规则、搜索路径优化、信息素更新等开展研究,完成设备架智能位置规划算法设计;并基于React组件化优势,完成设备架智能布置可视化开发;最后将设备架智能布置算法和前端UI结合,完成民用飞机设备架智能布置系统V1版本的研究设计,设计师可在操作页面一键运行算法,设备架布置方案计算完成后自动在页面展示,也可根据设计需要将计算结果导入CATIA开展数字样机设计。 展开更多
关键词 民用飞机 设备架 智能布置 蚁群算法 组件化
下载PDF
A Study on an Extensive Hierarchical Model for Demand Forecasting of Automobile Components
2
作者 Cisse Sory Ibrahima Jianwu Xue Thierno Gueye 《Journal of Management Science & Engineering Research》 2021年第2期40-48,共9页
Demand forecasting and big data analytics in supply chain management are gaining interest.This is attributed to the wide range of big data analytics in supply chain management,in addition to demand forecasting,and beh... Demand forecasting and big data analytics in supply chain management are gaining interest.This is attributed to the wide range of big data analytics in supply chain management,in addition to demand forecasting,and behavioral analysis.In this article,we studied the application of big data analytics forecasting in supply chain demand forecasting in the automotive parts industry to propose classifications of these applications,identify gaps,and provide ideas for future research.Algorithms will then be classified and then applied in supply chain management such as neural networks,k-nearest neighbors,time series forecasting,clustering,regression analysis,support vector regression and support vector machines.An extensive hierarchical model for short-term auto parts demand assess-ment was employed to avoid the shortcomings of the earlier models and to close the gap that regarded mainly a single time series.The concept of extensive relevance assessment was proposed,and subsequently methods to reflect the relevance of automotive demand factors were discussed.Using a wide range of skills,the factors and co-factors are expressed in the form of a correlation characteristic matrix to ensure the degree of influence of each factor on the demand for automotive components.Then,it is compared with the existing data and predicted the short-term historical data.The result proved the predictive error is less than 6%,which supports the validity of the prediction method.This research offers the basis for the macroeconomic regulation of the government and the production of auto parts manufacturers. 展开更多
关键词 Demand forecasting Supply chain management Automobile components algorithm Continuous time model Demand forecasting Supply chain management Automobile components algorithm Continuous time model
下载PDF
一种基于角色的特征模型构件化方法 被引量:4
3
作者 张俊 刘淑芬 姚志林 《电子学报》 EI CAS CSCD 北大核心 2011年第2期304-308,共5页
为了解决领域特征模型混杂交织及其与需求模型过度耦合的问题,本文设计了一种特征模型构件化方法.该方法引入角色的概念,并以角色为中介设计了特征-角色-构件映射算法,将在领域分析过程中提取和抽象的特征映射到不同的构件模型上.通过... 为了解决领域特征模型混杂交织及其与需求模型过度耦合的问题,本文设计了一种特征模型构件化方法.该方法引入角色的概念,并以角色为中介设计了特征-角色-构件映射算法,将在领域分析过程中提取和抽象的特征映射到不同的构件模型上.通过角色的中介作用,方法实现了特征模型和需求模型的解耦,各个特征模型的可变点可以自由方便地选择和组合,从而提高了软件的构件化水平. 展开更多
关键词 特征模型 角色 模型构件化 特征-角色-构件算法
下载PDF
高性能计算框架软件——SC_Tangram 被引量:4
4
作者 迟学斌 赵莲 +2 位作者 王姗姗 张鉴 姜金荣 《数据与计算发展前沿》 2019年第1期11-21,共11页
【目的】为降低并行编程难度,加速应用程序开发,本文设计并实现一种面向新型开发模式的并行框架软件—S C_Tangram,其中SC表示科学计算(Scientific Computing),Tangram(七巧板)寓意灵活组装。【方法】框架开发采用面向百亿亿次高性能计... 【目的】为降低并行编程难度,加速应用程序开发,本文设计并实现一种面向新型开发模式的并行框架软件—S C_Tangram,其中SC表示科学计算(Scientific Computing),Tangram(七巧板)寓意灵活组装。【方法】框架开发采用面向百亿亿次高性能计算的新型编程模型Charm++,为应用软件的并行扩展性和自适应性提供了保障。基于组件化软件开发方法,通过抽取应用中的共性部分,进行封装和隐藏,通过组件或配置文件接口的方式,供用户调用。【结果】针对现阶段的开发,框架已应用到力学计算、相场模拟等应用领域上,实验结果表明能得到较好的加速效果。【局限】目前框架软件上的功能模块还不全面,需针对不同应用需求开发相应的接口。【结论】SC_Tangram可以支持针对应用的共性和特性组件开发,随着在框架上开发更多的功能组件,未来将应用到更多的科学计算领域中。 展开更多
关键词 框架软件 Charm++ 组件化 共性算法
下载PDF
面向对象的PLC上位机软件平台设计 被引量:2
5
作者 林立春 林琼麒 张功镀 《自动化仪表》 CAS 2007年第12期15-18,共4页
通过介绍PLC上位机软件中常见的状态查看器的设计,以MODBUS协议为例,分析了一个统一、可扩展的PLC上位机开发平台在开发过程中可能遇到的问题,讨论一种可行的上位机通用组件的设计思想,并提出了可行的解决方案。充分利用.net等现代开发... 通过介绍PLC上位机软件中常见的状态查看器的设计,以MODBUS协议为例,分析了一个统一、可扩展的PLC上位机开发平台在开发过程中可能遇到的问题,讨论一种可行的上位机通用组件的设计思想,并提出了可行的解决方案。充分利用.net等现代开发语言平台和面向对象设计思想的优势,实现上位机平台的可配置、可重用、可扩展、低耦合、通用性。 展开更多
关键词 调度算法 上位机 工业以太网 耦合 软件组件化
下载PDF
Aerodynamic multi-objective integrated optimization based on principal component analysis 被引量:11
6
作者 Jiangtao HUANG Zhu ZHOU +2 位作者 Zhenghong GAO Miao ZHANG Lei YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1336-1348,共13页
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,... Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem. 展开更多
关键词 Aerodynamic optimization Dimensional reduction Improved multi-objective particle swarm optimization(MOPSO) algorithm Multi-objective Principal component analysis
原文传递
Anomaly detection of hot components in gas turbine based on frequent pattern extraction 被引量:3
7
作者 LIU JinFu ZHU LinHai +3 位作者 MA YuJia LIU Jiao ZHOU WeiXing YU DaRen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第4期567-586,共20页
Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the pe... Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the performance of hot components.However, during the early stages of a failure, the fault information is weak, and is simultaneously affected by various types of interference, such as the complex working conditions, ambient conditions, gradual performance degradation of the compressors and turbines, and noise. Additionally, inadequate effective information of the gas turbine also restricts the establishment of the detection model. To solve the above problems, this paper proposes an anomaly detection method based on frequent pattern extraction. A frequent pattern model(FPM) is applied to indicate the inherent regularity of change in EGT occurring from different types of interference. In this study, based on a genetic algorithm and support vector machine regression, the relationship model between the EGT and interference was tentatively built. The modeling accuracy was then further improved through the selection of the kernel function and training data. Experiments indicate that the optimal kernel function is linear and that the optimal training data should be balanced in addition to covering the appropriate range of operating conditions and ambient temperature. Furthermore, the thresholds based on the Pauta criterion that is automatically obtained during the modeling process, are used to determine whether hot components are operating abnormally. Moreover, the FPM is compared with the similarity theory, which demonstrates that the FPM can better suppress the effect of the component performance degradation and fuel heat value fluctuation. Finally, the effectiveness of the proposed method is validated on seven months of actual data obtained from a Titan130 gas turbine on an offshore oil platform. The results indicate that the proposed method can sensitively detect malfunctions in hot components during the early stages of a fault, and is robust to various types of interference. 展开更多
关键词 frequent pattern model(FPM) support vector machine regression(SVR) genetic algorithm(GA) gas turbine hot components anomaly detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部