As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study ...As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load.展开更多
The difficulty of selecting appropriate rheological model and parameters for the alternating distribution of soft and hard rock layers was often encountered due to the unhomogeneity, discontinuity and anisotropy of ro...The difficulty of selecting appropriate rheological model and parameters for the alternating distribution of soft and hard rock layers was often encountered due to the unhomogeneity, discontinuity and anisotropy of rock mass. The Burgers and generalized Kelvin models were applied to the soft and hard rock respectively and the rheological parameters were obtained based on the method of optimum separation. By using the simulated code FLAC^(3D), the stability of surrounding rocks of a certain underground plant was analyzed. The effect of surface load and weakening the parameters intensity of argillaceous and bioclastic interlayers between soft and hard rock on rheological behavior of layer composite rock mass was investigated. The results indicate that the rheological characteristics of soft and hard rock layer in composite rock mass can be described well with above two rheological models.展开更多
A recent research campaign at a Canadian nickel-copper mine involved instrumenting a hard rock sill drift pillar with an array of multi-point rod extensometers,distributed optical fibre strain sensors,and borehole pre...A recent research campaign at a Canadian nickel-copper mine involved instrumenting a hard rock sill drift pillar with an array of multi-point rod extensometers,distributed optical fibre strain sensors,and borehole pressure cells(BHPCs).The instrumentation spanned across a 15.24 m lengthwise segment of the relatively massive granitic pillar situated at a depth of 2.44 km within the mine.Between May 2016 and March 2017,the pillar’s displacement and pressure response were measured and correlated with mining activities on the same level as the pillar,including:(1)mine-by of the pillar,(2)footwall drift development,and(3)ore body stoping operations.Regarding displacements of the pillar,the extensometers provided high temporal resolution(logged hourly)and the optical fibre strain sensors provide high spatial resolution(measured every 0.65 mm along the length of each sensor).The combination of sensing techniques allowed centimetre-scale rock mass bulking near the pillar sidewalls to be distinguished from microstrain-scale fracturing towards the core of the pillar.Additionally,the influence and extent of a mine-scale schistose shear zone transecting the pillar was identified.By converting measured rock mass displacement to velocity,a process was demonstrated which allowed mining activities inducing displacements to be categorised by time-duration and cumulative displacement.In over half of the analysed mining activities,displacements were determined to prolong for over an hour,predominately resulting in submillimetre cumulative displacements,but in some cases multi-centimetre cumulative displacements were observed.This time-dependent behaviour was more pronounced within the vicinity of the plumb shear zone.Displacement measurements were also used to assess selected support member load and elongation mobilisation per mining activity.It was found that a combined static load and elongation capacity of reinforcing members was essential to maintaining excavation stability,while permitting gradual shedding of stress through controlled pillar sidewall displacements.展开更多
Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures und...Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures under uniaxial compression.The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed.The characteristics of the acoustic emission source location distribution,and frequency changes of the crack evolution process were also investigated.The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures.Hard layers predominantly produce tensile cracks;soft layers produce shear cracks.The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers.The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics,and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability.This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines,as well as in roadway layout and support.展开更多
基金supported by the Xi’an Key Laboratory of Geotechnical and Underground Engineering Open Fund Project (XKLGUEKF20-03)the Natural Science Basic Research Program of Shaanxi Province General Project-Youth Project(2024JC-YBQN-0258)。
文摘As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load.
基金Supported by the National Natural Science Foundation of China (50374049)
文摘The difficulty of selecting appropriate rheological model and parameters for the alternating distribution of soft and hard rock layers was often encountered due to the unhomogeneity, discontinuity and anisotropy of rock mass. The Burgers and generalized Kelvin models were applied to the soft and hard rock respectively and the rheological parameters were obtained based on the method of optimum separation. By using the simulated code FLAC^(3D), the stability of surrounding rocks of a certain underground plant was analyzed. The effect of surface load and weakening the parameters intensity of argillaceous and bioclastic interlayers between soft and hard rock on rheological behavior of layer composite rock mass was investigated. The results indicate that the rheological characteristics of soft and hard rock layer in composite rock mass can be described well with above two rheological models.
文摘A recent research campaign at a Canadian nickel-copper mine involved instrumenting a hard rock sill drift pillar with an array of multi-point rod extensometers,distributed optical fibre strain sensors,and borehole pressure cells(BHPCs).The instrumentation spanned across a 15.24 m lengthwise segment of the relatively massive granitic pillar situated at a depth of 2.44 km within the mine.Between May 2016 and March 2017,the pillar’s displacement and pressure response were measured and correlated with mining activities on the same level as the pillar,including:(1)mine-by of the pillar,(2)footwall drift development,and(3)ore body stoping operations.Regarding displacements of the pillar,the extensometers provided high temporal resolution(logged hourly)and the optical fibre strain sensors provide high spatial resolution(measured every 0.65 mm along the length of each sensor).The combination of sensing techniques allowed centimetre-scale rock mass bulking near the pillar sidewalls to be distinguished from microstrain-scale fracturing towards the core of the pillar.Additionally,the influence and extent of a mine-scale schistose shear zone transecting the pillar was identified.By converting measured rock mass displacement to velocity,a process was demonstrated which allowed mining activities inducing displacements to be categorised by time-duration and cumulative displacement.In over half of the analysed mining activities,displacements were determined to prolong for over an hour,predominately resulting in submillimetre cumulative displacements,but in some cases multi-centimetre cumulative displacements were observed.This time-dependent behaviour was more pronounced within the vicinity of the plumb shear zone.Displacement measurements were also used to assess selected support member load and elongation mobilisation per mining activity.It was found that a combined static load and elongation capacity of reinforcing members was essential to maintaining excavation stability,while permitting gradual shedding of stress through controlled pillar sidewall displacements.
基金This study was supported by the Natural Science Foundation of Hubei Province(No.2020CFB123)the Scientific Research Program of Hubei Education Department(No.Q20201109).
文摘Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures under uniaxial compression.The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed.The characteristics of the acoustic emission source location distribution,and frequency changes of the crack evolution process were also investigated.The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures.Hard layers predominantly produce tensile cracks;soft layers produce shear cracks.The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers.The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics,and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability.This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines,as well as in roadway layout and support.