期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analytical solution of velocity distribution for flow through submerged large deflection flexible vegetation 被引量:2
1
作者 Wei-jie WANG Wen-xin HUAI +1 位作者 Yu-hong ZENG Ji-fu ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第1期107-120,共14页
An analytical solution for predicting the vertical distribution of streamwise mean velocity in an open channel flow with submerged flexible vegetation is proposed when large bending occurs. The flow regime is separate... An analytical solution for predicting the vertical distribution of streamwise mean velocity in an open channel flow with submerged flexible vegetation is proposed when large bending occurs. The flow regime is separated into two horizontal layers: a vegetation layer and a free water layer. In the vegetation layer, a mechanical analysis for the flexible vegetation is conducted, and an approximately linear relationship between the drag force of bending vegetation and the streamwise mean flow velocity is observed in the case of large deflection, which differes significantly from the case of rigid upright vegetation. Based on the theoretical analysis, a linear streamwise drag force-mean flow velocity expression in the momentum equation is derived, and an analytical solution is obtained. For the free water layer, a new expression is presented, replacing the traditional logarithmic velocity distribution, to obtain a zero velocity gradient at the water surface. Finally, the analytical predictions are compared with published experimental data, and the good agreement demonstrates that this model is effective for the open channel flow through the large deflection flexible vegetation. 展开更多
关键词 analytical velocity distribution linear drag force flexible vegetation largedeflection mixing length theory
下载PDF
Analytical Models for Velocity Distributions in Compound Channels with Emerged and Submerged Vegetated Floodplains
2
作者 ZHANG Mingwu JIANG Chunbo +3 位作者 HUANG Heqing Gerald Charles NANSON CHEN Zhengbing YAO Wenyi 《Chinese Geographical Science》 SCIE CSCD 2017年第4期577-588,共12页
The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged ... The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term to account for the effects of vegetation.The three cases considered for open channels were two-stage rectangular channel with emerged vegetated floodplain,rectangular channel with submerged vegetated corner,and two-stage rectangular channel with submerged vegetated floodplain,respectively.To predict the depth-averaged velocity with submerged vegetated floodplains,we proposed a new method based on a two-layer approach where flow above and through the vegetation layer was described separately.Moreover,further experiments in the two-stage rectangular channel with submerged vegetated floodplain were carried out to verify the results.The analytical solutions of the cases indicated that the corresponding analytical depth-averaged velocity distributions agree well with the simulated and experimental prediction.The analytical solutions of the cases with theoretical foundation and without programming calculation were reasonable and applicable,which were more convenient than numerical simulations.The analytical solutions provided a way for future researches to solve the problems of submerged vegetation and discontinuous phenomenon of depth-averaged velocity at the stage point for compound channels.Understanding the hydraulics of flow in compound channels with vegetated floodplains is very important for supporting the management of fluvial processes. 展开更多
关键词 compound channel velocity distribution vegetated floodplain two-stage rectangular channel analytical solution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部