Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number ...Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.展开更多
By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variationa...By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.展开更多
Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic st...Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions MX-(MX = LiH,LiF,LiCl,NaF,NaCl,NaBr,RbCl,KCl,KBr,RbI,KI and CsI).The equation-of-motion electron-attachment coupled-cluster singles and doubles(EOM-EA-CCSD) method is used to calculate the electron binding energies(EBEs) of 10 electronic excited states of each of the 12 molecule anions.With addition of different s-/p-/d-type diffusion functions in the basis set,we have identified possible excited dipole bound states(DBSs) of each anion.With the investigation of EBEs on the 12 MXs with dipole moment(DM) up to 12.1 D,we evaluate the dependence of the number of anionic excited DBSs on molecular DM.The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with DM > 10 D can sustain a π-DBS of the anion.Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.展开更多
The development of efficient and robust anode materials for stable alkaline seawater electrolysis is severely limited by chlorine evolution reaction and chloride corrosion.Here,the sulfur-doped cobalt-nickel bimetalli...The development of efficient and robust anode materials for stable alkaline seawater electrolysis is severely limited by chlorine evolution reaction and chloride corrosion.Here,the sulfur-doped cobalt-nickel bimetallic phosphides(CoNiPS)are specifically designed as a pre-catalyst for navigating a surface reconstruction to fabricate the anions(PO^(3-)_(4) and SO^(2-)_(4))-decorated Co(Ni)OOH catalyst(R-CoNiPS)with exceptional durability and high activity for stable alkaline seawater oxidation(ASO).Various experiment techniques together with theoretical simulations both demonstrate that the in situ-generated PO^(3-)_(4) and SO^(2-)_(4) anions on catalyst surface can improve the oxygen evolution reaction(OER)activity,regulating and stabilizing the catalytic active species Co(Ni)OOH,as well as make a critical role in inhibiting the adsorp-tion of chloride ions and extending the service life of electrode.Therefore,this R-CoNiPS electrode exhi-bits superb OER activity toward AsO and stands out among the non-precious ASO electrocatalysts reported recently,requiring low overpotentials of 420 and 440 mV to attain large current densities of 500 and 1000 mA cm^(-2) in an alkaline natural seawater electrolyte,respectively.Particularly,the catalyst displays a negligible chloride corrosion at room temperature during ASO operation(>200 h)at 500 mA cm^(-2).This work opens up a new viewpoint for designing high-activity and durable electrocata-lystsforseawaterelectrolysis.展开更多
Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions...Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.展开更多
Micro-emulsion usually consists of water, oil, surfactants and co-surfactants, and each component has an effect on the phase behavior and solubilization of the micro-emulsion. When the surfactant in the micro-emulsion...Micro-emulsion usually consists of water, oil, surfactants and co-surfactants, and each component has an effect on the phase behavior and solubilization of the micro-emulsion. When the surfactant in the micro-emulsion system is quaternary ammonium cationic Gemini surfactant, the surfactant mainly combines with the anions in the salt. With the increase of salt concentration, the phase transformation of Winsor I → Winsor III → Winsor II occurred, but the optimum salinity and salt width are different because of the type of salt. The effects of 5 different kinds of monovalent anions, including C_6H_5SO_3^-, I-, Br-, NO_3^- and Cl-, on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are researched by Winsor phase diagram. It is found that the effects of organic anions C_6H_5SO_3-and I-on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are most significant, and the effects of Br-, NO_3^- and Cl-are less significant. Meanwhile, when the optimum solubilization is achieved, the amount of sodium benzoate is the least, indicating that the organic anion has stronger self-organization behavior with quaternary ammonium cationic Gemini surfactants.展开更多
Marine sediments from Lianshan Bay in Huludao, China, were studied in laboratory. A series of simulated experiments were carried out to investigate the influences of three kinds of anions CL^-, SO4^2- and HCO3^- on th...Marine sediments from Lianshan Bay in Huludao, China, were studied in laboratory. A series of simulated experiments were carried out to investigate the influences of three kinds of anions CL^-, SO4^2- and HCO3^- on the release ofCd, Pb, Cu and Zn from the sediments. The results showed that the sequences about the impact of the three anions were Cl^-〉HCO3^-〉SO4^2+. The release potential of heavy metals in the presence of each anions was in the following order: Cd≥Cu 〉Zn≈Pb. The correlations were positive between CI content and the quantity of Cd released from the marine sediment, whereas there was no significant relationship between CI content and amount of Cu and Zn released. For SO4^2- and HCO3^-, the release of the heavy metals from marine sediments was not obvious.展开更多
Inserting corrosion inhibitors into a lamellar protective coating is an effective way to improve the corrosion resistance of metal substrates.In this work,two kinds of environmentally friendly organic acid anions,aspa...Inserting corrosion inhibitors into a lamellar protective coating is an effective way to improve the corrosion resistance of metal substrates.In this work,two kinds of environmentally friendly organic acid anions,aspartic acid(ASP)and lauric acid(La),were explored as corrosion inhibitors to in situ intercalate into the Zn Al-layered double hydroxides(Zn Al-LDHs)on AZ31 magnesium alloys by a facile one-step hydrothermal method.The morphology,composition,structure and the corrosion resistance of these two LDHs coating before and after corrosion experiment were investigated.It is found that both the two kinds of Zn Al-LDHs films consist of uniform and dense layered nanosheets(NSs),and the NSs of ZnAl-ASP-LDHs films grow vertically,but those of ZnAl-La-LDHs films exhibit a staggered tilted structure.The corrosion current density of the two Zn Al-LDHs films are two orders of magnitude lower than that of Mg alloy substrate.After one week’s immersion in NaCl solution,the NSs structure of two kind of ZnAl-LDHs films still remains the uniform and densely coverage on Mg alloy.Owing to the larger d(003)spacing,the ZnAl-La-LDHs have better ability to absorb Cl-and release interlayer anions than Zn Al-ASP-LDHs.These results indicate that the Zn Al-LDHs films intercalated with organic anions,specially La anions,can significantly improve the corrosion resistance of Mg alloy.展开更多
The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmissi...The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and potentiodynamic polarization.The results showed that B_(4)O_(7)^(2−)increased the spark intensity and dissolved most of the oxides at high temperatures.Then,a thicker barrier layer at the coating/substrate interface was produced,which increased the polarization resistance of the coating.PO_(4)^(3−)at a low concentration also promoted the uniform growth of the MAO coating and the formation of hat-shaped holes in the outer deposition layer.The thickness of the MAO coatings obtained in Na_(2)B_(4)O_(7) electrolytes exhibited an exponential increase with time at spark discharge stage,while that of the MAO coating obtained in phosphate–tetraborate electrolytes showed a linear trend as the PO_(4)^(3−)content increased.展开更多
A laboratory incubation experiment was conducted to elucidate the effects of associated anions on toxicity of cadmium applied to microbial biomass in the red soil. Cadmium was applied at six different levels, i.e., 0 ...A laboratory incubation experiment was conducted to elucidate the effects of associated anions on toxicity of cadmium applied to microbial biomass in the red soil. Cadmium was applied at six different levels, i.e., 0 (background), 5, 15, 30, 60 and 100 μg-1 soil in the form of either cadmium acetate or cadmium chloride.Application of cadmium as cadmium acetate markedly reduced the soil microbial biomass carbon compared to cadmium applied as cadmium chloride at all the tested levels. Similarly, organic carbon to biomass carbon ratio in the soil was markedly increased by increasing the level of the cadmium in the soil as cadmium acetate,while the change was much smaller in the case of cadmium chloride at the same cadmium levels. The results suggested that due consideration should be given to the source of cadmium while deciding the cadmium levels in experiments.展开更多
It is well-known that the electrolytes can influence the electrochemical reduction of carbon dioxide(ERCO2)in aqueous media.In this work,we explore the effects of alkali metal cations and anions(Li^+,Na^+,K^+,Rb^+,Cs^...It is well-known that the electrolytes can influence the electrochemical reduction of carbon dioxide(ERCO2)in aqueous media.In this work,we explore the effects of alkali metal cations and anions(Li^+,Na^+,K^+,Rb^+,Cs^+,HCO3^-,Cl^-,Br^-,I^-)on the current density and product selectivity for the ERCO2 into formic acid(HCOOH)on the SnO2/carbon paper(Sn O2/C)electrode.Results of the ERCO2 experiments show that for the cations,the promotion effects on current density and faradaic efficiencies(FEs)are in the order of Li^+b Na^+b K^+b Cs^+b Rb^+.For the anions,the current density values are in the order of Na HCO3 b NaClb Na Br b Na I and KHCO3 b KCl≈KI b KBr,respectively,and that on the FEs for the formation of the HCOOH(FEHCOOH)is HCO3-b Cl-b Br-b I-.Based on this result,the effects of alkali metal cations and anions on ERCO2 are discussed.展开更多
The rate constants of reactions between the SO4^- radical and some common anions in atmospheric aqueous droplets e.g. Cl^-,NO^-, HSO3^- and HCO3^- were determined using the laser flash photolysis technique.Absorption ...The rate constants of reactions between the SO4^- radical and some common anions in atmospheric aqueous droplets e.g. Cl^-,NO^-, HSO3^- and HCO3^- were determined using the laser flash photolysis technique.Absorption spectra of SO4^- and the product radicals were also reported.The chloride ion was evaluated among all the anions to be the most efficient scavenger of SO4^-.The results may supply useful information for a better understanding of the vigorous radical-initiated reactions in atmospheric aqueous droplets such as clouds, rains or fogs.展开更多
We report the lithium ionic conductivities of closo –type complex hydrides synthesized from various molar ratios of lithium borohydride(LiBH4) and decaborane(B10H14) as starting materials. The prepared closo –type c...We report the lithium ionic conductivities of closo –type complex hydrides synthesized from various molar ratios of lithium borohydride(LiBH4) and decaborane(B10H14) as starting materials. The prepared closo –type complex hydrides comprised [B12H12]^2-, [B11H11]^2-, and [B10H10]^2- complex anions. In addition, increasing the LiBH4 content in the starting materials increased the amounts of [B11H11]^2- and [B10H10]^2-, leading to an improved ion conductivity of the prepared sample. The present study offers useful insights into strategies for controlling the complex anion composition in emerging solid electrolytes of closo-type complex hydrides at the molecular level, and improving their ionic conductivities.展开更多
Zn2Al layered double hydroxide pillared with Dawson polyoxometalates,P2W17ZO8-61(Z=Mn2+,Co2+,Ni2+,Cu2+,Zn2+)was prepared.A basal space ofca.16 nm indicates the intercalated Dawson ions to be oriented with their C2 axi...Zn2Al layered double hydroxide pillared with Dawson polyoxometalates,P2W17ZO8-61(Z=Mn2+,Co2+,Ni2+,Cu2+,Zn2+)was prepared.A basal space ofca.16 nm indicates the intercalated Dawson ions to be oriented with their C2 axis perpendicular to the double hydroxide layers(with the exception of P2W17ZnLDH).The IR and^(13)P MASNMR spectral reveal that the Dawson ions retain their integrity in the interlayer space of LDH.A preliminary study shows that these compounds are highly active catalysts for the oxidation of cyclohexene with molecular oxygen.展开更多
This paper determined cations and anions concentrations, Total Kjeldahl Nitrogen (TKN), and heavy metals content in sewage sludge collected from the drying beds of wastewater treatment plant in Gaza. The aim was to te...This paper determined cations and anions concentrations, Total Kjeldahl Nitrogen (TKN), and heavy metals content in sewage sludge collected from the drying beds of wastewater treatment plant in Gaza. The aim was to test the possibility of using this sewage sludge as an alternative source of mineral fertilizers. Many instruments were used in this work: flame photometry (K, Na), EDTA titration (Ca, Mg), the turbidity method () , spectrophotometer (turbidity), ascorbic acid method (orthophosphate), titrimetric method (Cl﹣), inductive coupled plasma analyzer (ICP, heavy metals). All the processes of experiments and analyses were described clearly for reference. Results showed that concentrations of Na﹢, K﹢, Ca2﹢ and Mg2﹢ were 28.93, 2.53, 271 and 177 mg/kg respectively whereas? were 0.434, 18.59, 0.87 and 0.026 g/kg respectively. The concentrations of Fe, Cu, Pb, Zn and Mn were 125.12, 172.56, 76.88, 218.73 and 157.56 mg/kg respectively. These results indicate that sewage sludge from Gaza contained high fractions of most plant nutrients accordingly, and it may be advantageous to use the sludge as a natural source of plant fertilizers.展开更多
The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H...The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.展开更多
The disposition of most drugs is highly dependent on specialized transporters. OAT1 and OAT3 are two organic anion transporters expressed in the basolateral membrane of renal proximal tubule cells, identified as contr...The disposition of most drugs is highly dependent on specialized transporters. OAT1 and OAT3 are two organic anion transporters expressed in the basolateral membrane of renal proximal tubule cells, identified as contributors to xenobiotic and endogenous organic anion secretion. It is well known that cholestasis may cause renal damage. Impairment of kidney function produces modifications in the renal elimination of drugs. Recent studies have demonstrated that the renal abundance of OAT1 and OAT3 plays an important role in the renal elimination of organic anions in the presence of extrahepatic cholestasis. Time elapsed after obstructive cholestasis has an important impact on the regulation of both types of organic anion transporters. The renal expression of OAT1 and OAT3 should be taken into account in order to improve pharmacotherapeutic efficacy and to prevent drug toxicity during the onset of this hepatic disease.展开更多
In this work, a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water. Inorganic anions in slightly soluble organic solvents can be determined by the in-...In this work, a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water. Inorganic anions in slightly soluble organic solvents can be determined by the in-line hollow fiber membrane extractor coupled with ion chromatography at first time. Different aspects of the extraction procedure such as magnetic stirring speed, extraction flow rate and extraction time were optimized to achieve high extraction efficiency and good separation results. Satisfactory linear range, limits of detection and good repeatability were obtained. The procedure was applied to analyze inorganic anions in two commercial ethyl acetate samples.展开更多
Methacrylate-based monolithic column was prepared in fused-silica capillary (80 ′ 0.32 mm i.d.) by in situ polymerizetion reaction using glycidyl methacrylate as monomer;ethylene dimethacrylate as crosslinker;1-propa...Methacrylate-based monolithic column was prepared in fused-silica capillary (80 ′ 0.32 mm i.d.) by in situ polymerizetion reaction using glycidyl methacrylate as monomer;ethylene dimethacrylate as crosslinker;1-propanol, 1,4-butanediol, and water as porogenic solvents. The monolith matrix was modified with trimethylamine to create strong anion exchanger via ring opening reaction of epoxy groups. The morphology of the monolithic column was studied by using Scanning Electron Microscope (SEM). This column had good mechanical stability and permeability. The effects of various mobile phases for separation of inorganic anions were investigated. Iodate, bromate, nitrite, bromide, and nitrate were separated within 11 min using100 mMpotassium chloride as mobile phase and detected at 210 nm. This method showed good precision of retention time, acceptable linearity and good sensitivity. Under the optimum condition, the RSD of the retention time was in the range of 1.09%-1.75% (n = 6). The calibration curve showed linear relationships between the peak area and the concentration. The limits of detection (LOD) and the limits of quantitation (LOQ) were between 0.08-0.18 mM and 0.26-0.61 mM, respectively. This method was applied to the determination of inorganic anions in tap water and ground water samples.展开更多
In this work, we investigate the effects of thiocyanate anions on the switching and the structure of poly(Nisopropylacrylamide)(PNIPAM) brushes using a molecular theory. Our model takes into consideration the PNIPAM–...In this work, we investigate the effects of thiocyanate anions on the switching and the structure of poly(Nisopropylacrylamide)(PNIPAM) brushes using a molecular theory. Our model takes into consideration the PNIPAM–anion bonds, the electrostatic effects and their explicit coupling to the PNIPAM conformations. It is found that at low thiocyanate anion concentration, as the anion concentration of thiocyanate increases, thiocyanate anions are more associated with PNIPAM chains through the PNIPAM–anion bonds, which contributes to stronger electrostatic repulsion and leads to an increase of lower critical solution temperature(LCST). By analyzing the average volume fractions of PNIPAM brushes,it is found that the PNIPAM brush presents a plateau structure. Our results show that the thiocyanate anions promote phase segregation due to the PNIPAM–anion bonds and the electrostatic effect. According to our model, the reduction of LCST can be explained as follows: at high thiocyanate anion concentration, with the increase of thiocyanate concentration, more ion bindings occurring between thiocyanate anions and PNIPAM chains will result in the increase of the hydrophobicity of PNIPAM chains;when the increase of electrostatic repulsion is insufficient to overcome the hydrophobic interaction of PNIPAM chains, it will lead to the reduction of brush height and LCST at high thiocyanate anion concentration. Our theoretical results are consistent with the experimental observations, and provide a fundamental understanding of the effects of thiocyanate on the LCST of PNIPAM brushes.展开更多
基金financially supported by the National Natural Science Foundation of China(22176059,21777042,and 22076045)the authors would also like to acknowledge support from the Science and Technology Commission of Shanghai Municipality’s Yangfan Special Project(23YF1408400)the Fundamental Research Funds for the Central Universities.
文摘Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.
文摘By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274178 and 12174148)Support of High Performance Computing Center of Jilin Universitythe high-performance computing cluster Tiger@IAMP。
文摘Information about electronic excited states of molecular anions plays an important role in investigating electron attachment and detachment processes.Here we present a high-level theoretical study of the electronic structures of 12 alkali-metal-containing diatomic anions MX-(MX = LiH,LiF,LiCl,NaF,NaCl,NaBr,RbCl,KCl,KBr,RbI,KI and CsI).The equation-of-motion electron-attachment coupled-cluster singles and doubles(EOM-EA-CCSD) method is used to calculate the electron binding energies(EBEs) of 10 electronic excited states of each of the 12 molecule anions.With addition of different s-/p-/d-type diffusion functions in the basis set,we have identified possible excited dipole bound states(DBSs) of each anion.With the investigation of EBEs on the 12 MXs with dipole moment(DM) up to 12.1 D,we evaluate the dependence of the number of anionic excited DBSs on molecular DM.The results indicate that there are at least two or three DBSs of anions with a molecular DM larger than 7 D and a molecule with DM > 10 D can sustain a π-DBS of the anion.Our study has some implications for the excited DBS electronic states of alkali-metal-containing diatomic molecules.
基金the funding support from the National Natural Science Foundation of China (U22A2078)the Fundamental Research Funds of Central Universities (2022CDJQY-007 and 2022CDJJCLK001)
文摘The development of efficient and robust anode materials for stable alkaline seawater electrolysis is severely limited by chlorine evolution reaction and chloride corrosion.Here,the sulfur-doped cobalt-nickel bimetallic phosphides(CoNiPS)are specifically designed as a pre-catalyst for navigating a surface reconstruction to fabricate the anions(PO^(3-)_(4) and SO^(2-)_(4))-decorated Co(Ni)OOH catalyst(R-CoNiPS)with exceptional durability and high activity for stable alkaline seawater oxidation(ASO).Various experiment techniques together with theoretical simulations both demonstrate that the in situ-generated PO^(3-)_(4) and SO^(2-)_(4) anions on catalyst surface can improve the oxygen evolution reaction(OER)activity,regulating and stabilizing the catalytic active species Co(Ni)OOH,as well as make a critical role in inhibiting the adsorp-tion of chloride ions and extending the service life of electrode.Therefore,this R-CoNiPS electrode exhi-bits superb OER activity toward AsO and stands out among the non-precious ASO electrocatalysts reported recently,requiring low overpotentials of 420 and 440 mV to attain large current densities of 500 and 1000 mA cm^(-2) in an alkaline natural seawater electrolyte,respectively.Particularly,the catalyst displays a negligible chloride corrosion at room temperature during ASO operation(>200 h)at 500 mA cm^(-2).This work opens up a new viewpoint for designing high-activity and durable electrocata-lystsforseawaterelectrolysis.
基金Project(41371475)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.
基金Supported by China Petroleum Science and Technology Innovation Fund(2017D-5007-0601)State Key Laboratory of Heavy Oil Processing and China University of Petroleum(East China)2018 Graduate Engineering Innovation Project Found(SLKZZ-2017002)
文摘Micro-emulsion usually consists of water, oil, surfactants and co-surfactants, and each component has an effect on the phase behavior and solubilization of the micro-emulsion. When the surfactant in the micro-emulsion system is quaternary ammonium cationic Gemini surfactant, the surfactant mainly combines with the anions in the salt. With the increase of salt concentration, the phase transformation of Winsor I → Winsor III → Winsor II occurred, but the optimum salinity and salt width are different because of the type of salt. The effects of 5 different kinds of monovalent anions, including C_6H_5SO_3^-, I-, Br-, NO_3^- and Cl-, on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are researched by Winsor phase diagram. It is found that the effects of organic anions C_6H_5SO_3-and I-on the phase behavior and solubilization of quaternary ammonium cationic Gemini micro-emulsion are most significant, and the effects of Br-, NO_3^- and Cl-are less significant. Meanwhile, when the optimum solubilization is achieved, the amount of sodium benzoate is the least, indicating that the organic anion has stronger self-organization behavior with quaternary ammonium cationic Gemini surfactants.
基金The National Basic Research Program (973) of China (No. 2004CB3418501)
文摘Marine sediments from Lianshan Bay in Huludao, China, were studied in laboratory. A series of simulated experiments were carried out to investigate the influences of three kinds of anions CL^-, SO4^2- and HCO3^- on the release ofCd, Pb, Cu and Zn from the sediments. The results showed that the sequences about the impact of the three anions were Cl^-〉HCO3^-〉SO4^2+. The release potential of heavy metals in the presence of each anions was in the following order: Cd≥Cu 〉Zn≈Pb. The correlations were positive between CI content and the quantity of Cd released from the marine sediment, whereas there was no significant relationship between CI content and amount of Cu and Zn released. For SO4^2- and HCO3^-, the release of the heavy metals from marine sediments was not obvious.
基金supported by the Natural Science Foundation of Chongqing(cstc2019jcyjmsxm X0566,cstc2018jcyj AX0450,cstc2018jcyj A2923,cstc2017jcyj AX0393)Projects of President Foundation of Chongqing University(2019CDXZWL002)+3 种基金Fundamental Research Funds for the Central Universities(2019CDXYWL0029,2018CDJDWL0011,106112017CDJQJ328839,106112016CDJZR288805)Science and Technology Research Program of Chongqing Municipal Education Commission(KJKJQN201800102,KJQN201800619,KJ1703042)NSFC(11544010,11374359,11304405 and 1155305)the Sharing Fund of Large-scale Equipment of Chongqing University(201903150094)
文摘Inserting corrosion inhibitors into a lamellar protective coating is an effective way to improve the corrosion resistance of metal substrates.In this work,two kinds of environmentally friendly organic acid anions,aspartic acid(ASP)and lauric acid(La),were explored as corrosion inhibitors to in situ intercalate into the Zn Al-layered double hydroxides(Zn Al-LDHs)on AZ31 magnesium alloys by a facile one-step hydrothermal method.The morphology,composition,structure and the corrosion resistance of these two LDHs coating before and after corrosion experiment were investigated.It is found that both the two kinds of Zn Al-LDHs films consist of uniform and dense layered nanosheets(NSs),and the NSs of ZnAl-ASP-LDHs films grow vertically,but those of ZnAl-La-LDHs films exhibit a staggered tilted structure.The corrosion current density of the two Zn Al-LDHs films are two orders of magnitude lower than that of Mg alloy substrate.After one week’s immersion in NaCl solution,the NSs structure of two kind of ZnAl-LDHs films still remains the uniform and densely coverage on Mg alloy.Owing to the larger d(003)spacing,the ZnAl-La-LDHs have better ability to absorb Cl-and release interlayer anions than Zn Al-ASP-LDHs.These results indicate that the Zn Al-LDHs films intercalated with organic anions,specially La anions,can significantly improve the corrosion resistance of Mg alloy.
文摘The growth kinetics of microarc oxidation(MAO)coatings on Ti6Al4V alloy was studied by designing an electrolyte with low PO_(4)^(3−)content and high B_(4)O_(7)^(2−)content,using scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and potentiodynamic polarization.The results showed that B_(4)O_(7)^(2−)increased the spark intensity and dissolved most of the oxides at high temperatures.Then,a thicker barrier layer at the coating/substrate interface was produced,which increased the polarization resistance of the coating.PO_(4)^(3−)at a low concentration also promoted the uniform growth of the MAO coating and the formation of hat-shaped holes in the outer deposition layer.The thickness of the MAO coatings obtained in Na_(2)B_(4)O_(7) electrolytes exhibited an exponential increase with time at spark discharge stage,while that of the MAO coating obtained in phosphate–tetraborate electrolytes showed a linear trend as the PO_(4)^(3−)content increased.
文摘A laboratory incubation experiment was conducted to elucidate the effects of associated anions on toxicity of cadmium applied to microbial biomass in the red soil. Cadmium was applied at six different levels, i.e., 0 (background), 5, 15, 30, 60 and 100 μg-1 soil in the form of either cadmium acetate or cadmium chloride.Application of cadmium as cadmium acetate markedly reduced the soil microbial biomass carbon compared to cadmium applied as cadmium chloride at all the tested levels. Similarly, organic carbon to biomass carbon ratio in the soil was markedly increased by increasing the level of the cadmium in the soil as cadmium acetate,while the change was much smaller in the case of cadmium chloride at the same cadmium levels. The results suggested that due consideration should be given to the source of cadmium while deciding the cadmium levels in experiments.
基金financially supported by International Academic Cooperation and Exchange Program of Shanghai Science and Technology Committee(18160723600)Scientific Research and Technology Development Plan of Guangxi(GUIKE AD17195084)。
文摘It is well-known that the electrolytes can influence the electrochemical reduction of carbon dioxide(ERCO2)in aqueous media.In this work,we explore the effects of alkali metal cations and anions(Li^+,Na^+,K^+,Rb^+,Cs^+,HCO3^-,Cl^-,Br^-,I^-)on the current density and product selectivity for the ERCO2 into formic acid(HCOOH)on the SnO2/carbon paper(Sn O2/C)electrode.Results of the ERCO2 experiments show that for the cations,the promotion effects on current density and faradaic efficiencies(FEs)are in the order of Li^+b Na^+b K^+b Cs^+b Rb^+.For the anions,the current density values are in the order of Na HCO3 b NaClb Na Br b Na I and KHCO3 b KCl≈KI b KBr,respectively,and that on the FEs for the formation of the HCOOH(FEHCOOH)is HCO3-b Cl-b Br-b I-.Based on this result,the effects of alkali metal cations and anions on ERCO2 are discussed.
文摘The rate constants of reactions between the SO4^- radical and some common anions in atmospheric aqueous droplets e.g. Cl^-,NO^-, HSO3^- and HCO3^- were determined using the laser flash photolysis technique.Absorption spectra of SO4^- and the product radicals were also reported.The chloride ion was evaluated among all the anions to be the most efficient scavenger of SO4^-.The results may supply useful information for a better understanding of the vigorous radical-initiated reactions in atmospheric aqueous droplets such as clouds, rains or fogs.
基金supported by METX,JSPS KAKENHI (Grant numbers, 16K0 676 6, 17H0 6519, 17K18972, 18H01727, and JP18H05513)Collaborative Research Center on Energy Materials in IMR (E-IMR)Target Project 4 of WPI-AIMR, Tohoku University
文摘We report the lithium ionic conductivities of closo –type complex hydrides synthesized from various molar ratios of lithium borohydride(LiBH4) and decaborane(B10H14) as starting materials. The prepared closo –type complex hydrides comprised [B12H12]^2-, [B11H11]^2-, and [B10H10]^2- complex anions. In addition, increasing the LiBH4 content in the starting materials increased the amounts of [B11H11]^2- and [B10H10]^2-, leading to an improved ion conductivity of the prepared sample. The present study offers useful insights into strategies for controlling the complex anion composition in emerging solid electrolytes of closo-type complex hydrides at the molecular level, and improving their ionic conductivities.
文摘Zn2Al layered double hydroxide pillared with Dawson polyoxometalates,P2W17ZO8-61(Z=Mn2+,Co2+,Ni2+,Cu2+,Zn2+)was prepared.A basal space ofca.16 nm indicates the intercalated Dawson ions to be oriented with their C2 axis perpendicular to the double hydroxide layers(with the exception of P2W17ZnLDH).The IR and^(13)P MASNMR spectral reveal that the Dawson ions retain their integrity in the interlayer space of LDH.A preliminary study shows that these compounds are highly active catalysts for the oxidation of cyclohexene with molecular oxygen.
文摘This paper determined cations and anions concentrations, Total Kjeldahl Nitrogen (TKN), and heavy metals content in sewage sludge collected from the drying beds of wastewater treatment plant in Gaza. The aim was to test the possibility of using this sewage sludge as an alternative source of mineral fertilizers. Many instruments were used in this work: flame photometry (K, Na), EDTA titration (Ca, Mg), the turbidity method () , spectrophotometer (turbidity), ascorbic acid method (orthophosphate), titrimetric method (Cl﹣), inductive coupled plasma analyzer (ICP, heavy metals). All the processes of experiments and analyses were described clearly for reference. Results showed that concentrations of Na﹢, K﹢, Ca2﹢ and Mg2﹢ were 28.93, 2.53, 271 and 177 mg/kg respectively whereas? were 0.434, 18.59, 0.87 and 0.026 g/kg respectively. The concentrations of Fe, Cu, Pb, Zn and Mn were 125.12, 172.56, 76.88, 218.73 and 157.56 mg/kg respectively. These results indicate that sewage sludge from Gaza contained high fractions of most plant nutrients accordingly, and it may be advantageous to use the sludge as a natural source of plant fertilizers.
基金This work was supported by the Chinese Academy of Sciences (Hundred Talents Fund), the National Natural Science Foundation of China (No.20703048 and No.20803083), and the Center of Molecular Science Foundation of Institute of Chemistry, Chinese Academy of Sciences (No.CMS-LX200902).
文摘The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.
基金Supported by Grants from FONCyT (PICT 05-20201) and CONICET (PIP 5592)
文摘The disposition of most drugs is highly dependent on specialized transporters. OAT1 and OAT3 are two organic anion transporters expressed in the basolateral membrane of renal proximal tubule cells, identified as contributors to xenobiotic and endogenous organic anion secretion. It is well known that cholestasis may cause renal damage. Impairment of kidney function produces modifications in the renal elimination of drugs. Recent studies have demonstrated that the renal abundance of OAT1 and OAT3 plays an important role in the renal elimination of organic anions in the presence of extrahepatic cholestasis. Time elapsed after obstructive cholestasis has an important impact on the regulation of both types of organic anion transporters. The renal expression of OAT1 and OAT3 should be taken into account in order to improve pharmacotherapeutic efficacy and to prevent drug toxicity during the onset of this hepatic disease.
基金supported by National Natural Science Foundation of China(No.20775070)by Zhejiang Provincial Natural Science Foundation of China(No.R4080124)Zhejiang Qianjiang Project of Science and Technology for Competent People(No.2008R10028).
文摘In this work, a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water. Inorganic anions in slightly soluble organic solvents can be determined by the in-line hollow fiber membrane extractor coupled with ion chromatography at first time. Different aspects of the extraction procedure such as magnetic stirring speed, extraction flow rate and extraction time were optimized to achieve high extraction efficiency and good separation results. Satisfactory linear range, limits of detection and good repeatability were obtained. The procedure was applied to analyze inorganic anions in two commercial ethyl acetate samples.
文摘Methacrylate-based monolithic column was prepared in fused-silica capillary (80 ′ 0.32 mm i.d.) by in situ polymerizetion reaction using glycidyl methacrylate as monomer;ethylene dimethacrylate as crosslinker;1-propanol, 1,4-butanediol, and water as porogenic solvents. The monolith matrix was modified with trimethylamine to create strong anion exchanger via ring opening reaction of epoxy groups. The morphology of the monolithic column was studied by using Scanning Electron Microscope (SEM). This column had good mechanical stability and permeability. The effects of various mobile phases for separation of inorganic anions were investigated. Iodate, bromate, nitrite, bromide, and nitrate were separated within 11 min using100 mMpotassium chloride as mobile phase and detected at 210 nm. This method showed good precision of retention time, acceptable linearity and good sensitivity. Under the optimum condition, the RSD of the retention time was in the range of 1.09%-1.75% (n = 6). The calibration curve showed linear relationships between the peak area and the concentration. The limits of detection (LOD) and the limits of quantitation (LOQ) were between 0.08-0.18 mM and 0.26-0.61 mM, respectively. This method was applied to the determination of inorganic anions in tap water and ground water samples.
基金Project supported by the Joint Funds of Xinjiang Natural Science Foundation(Grant No.2019D01C333)the National Natural Science Foundation of China(Grant Nos.11847610 and 21764015)the National Basic Research Program of China(Grant No.2015CB857100)
文摘In this work, we investigate the effects of thiocyanate anions on the switching and the structure of poly(Nisopropylacrylamide)(PNIPAM) brushes using a molecular theory. Our model takes into consideration the PNIPAM–anion bonds, the electrostatic effects and their explicit coupling to the PNIPAM conformations. It is found that at low thiocyanate anion concentration, as the anion concentration of thiocyanate increases, thiocyanate anions are more associated with PNIPAM chains through the PNIPAM–anion bonds, which contributes to stronger electrostatic repulsion and leads to an increase of lower critical solution temperature(LCST). By analyzing the average volume fractions of PNIPAM brushes,it is found that the PNIPAM brush presents a plateau structure. Our results show that the thiocyanate anions promote phase segregation due to the PNIPAM–anion bonds and the electrostatic effect. According to our model, the reduction of LCST can be explained as follows: at high thiocyanate anion concentration, with the increase of thiocyanate concentration, more ion bindings occurring between thiocyanate anions and PNIPAM chains will result in the increase of the hydrophobicity of PNIPAM chains;when the increase of electrostatic repulsion is insufficient to overcome the hydrophobic interaction of PNIPAM chains, it will lead to the reduction of brush height and LCST at high thiocyanate anion concentration. Our theoretical results are consistent with the experimental observations, and provide a fundamental understanding of the effects of thiocyanate on the LCST of PNIPAM brushes.