A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri...A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.展开更多
A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-...A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.展开更多
Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distributio...Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distribution rate of divalent manganese(Mn^(2+))was observed at an optimal roasting temperature of 650℃,a roasting time of 25 min,and an H2 concentration of 20vol%;under these conditions.The manganese predominantly existed in the form of manganosite.This study investigated the generation mechanism of manganosite based on the reduction kinetics,phase transformation,and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate,and the optimal kinetic model for the reaction was the random nucleation and growth model(reaction order,n=3/2)with an activation energy(E_(a))of 24.119 kJ·mol^(−1).Throughout the mineral phase transformation,manganese oxide from the outer layer of particles moves inward to the core.In addition,pyrolusite follows the reduction sequence of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO,and the reduction of manganese oxides in each valence state simultaneously proceeds.These findings provide significant insight into the efficient and clean utilization of pyrolusite.展开更多
Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases ...Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.展开更多
The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade compl...The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.展开更多
The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from struc...The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.展开更多
To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)stru...To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.展开更多
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol...Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.展开更多
An accurate flow stress model was established by considering the parameters of strain rate,strain and temperature as well asβ→a+βphase transformation in order to develop the plastic forming theory of TC18 titanium ...An accurate flow stress model was established by considering the parameters of strain rate,strain and temperature as well asβ→a+βphase transformation in order to develop the plastic forming theory of TC18 titanium alloy.Firstly,the phase transition kinetics of TC18 titanium alloy during isothermal and continuous cooling at 1073 and 1273 K was studied by thermodynamic calculation,meanwhile,the relationship of volume fraction of phase transition with temperature and time was obtained.Constitutive models were calculated by investigating flow behaviors under hot compression tests with the strain rates of 0.001-1s^(-1) and temperatures of 973-1223 K in the singleβand a+βregions in TC18 titanium alloy,respectively.By combining the phase transformation dynamic kinetics with constitutive models,an accurate flow stress model was established,providing theoretical basis and data support for the hot forging of TC18 titanium alloy.展开更多
Phase transformation is one of the factors that would significantly influence the ability to resist cavitation erosion of stainless steels. Due to the specific properties of duplex stainless steel, the heat treatment ...Phase transformation is one of the factors that would significantly influence the ability to resist cavitation erosion of stainless steels. Due to the specific properties of duplex stainless steel, the heat treatment would bring about significant phase transformations. In this paper, we have examined the previous studies on the phase transition of stainless steel, including the literature on the classification of stainless steel, spinodal decomposition, sigma phase transformation, and cavitation erosion of double stainless steel. Through these literature investigations, the destruction of cavitation erosion on duplex stainless steel can be clearly known, and the causes of failure of duplex stainless steel in seawater can be clarified, thus providing a theoretical basis for subsequent scientific research. And the review is about to help assess the possibility of using bulk heat treatment to improve the cavitation erosion (CE) behaviour of the duplex stainless steel 7MoPLUS.展开更多
Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence...Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.展开更多
In order to remove or reduce the negative effect of MgO in calcium aluminate slags, the method of adding Na2O into calcium aluminate slags was studied and its effect on leaching mechanism was also analyzed. The result...In order to remove or reduce the negative effect of MgO in calcium aluminate slags, the method of adding Na2O into calcium aluminate slags was studied and its effect on leaching mechanism was also analyzed. The results show that the alumina leaching efficiency of the calcium aluminate slag increases from 68.73% to 80.86% with Na2O content increasing from 0 to 4% when MgO content is 3%. The XRD results show that the quaternary compound C20A13M3S3 disappears when Na2O content increases to 4%. The addition of Na2O cannot remove the negative effect of MgO on leachability completely. XRD and EDS results indicate that Na2O can come into the lattice of 12CaO·7Al2O3 and promote the formation of 12CaO·7Al2O3展开更多
Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was esta...Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure.展开更多
TA2 pure titanium was chosen to research the interaction among deformation, recrystallization and phase transformation during hot compression. The samples were hot compressed by thermal simulation method with differen...TA2 pure titanium was chosen to research the interaction among deformation, recrystallization and phase transformation during hot compression. The samples were hot compressed by thermal simulation method with different processing parameters. Variant selection induced by stress during cooling after compression was found. The prismatical texture component which featured that the [0001] direction perpendicular to the compressing direction produced preferentially under the compressing stress. As a result, the transformedα phase possesses strong prismatical texture which is different with the basal texture of compressed αphase. The minimum elastic strain energy is demonstrated to be the main reason that causes the variant selection. Dynamic recrystallization behavior and microstructure evolution during hot compression were also studied.展开更多
The hydrogen-induced microstructure evolution and phase transformations in Ti-6Al-4V alloy during heating and cooling were studied.The specimens were heated to 1273 K and subsequently cooled to room temperature.The hy...The hydrogen-induced microstructure evolution and phase transformations in Ti-6Al-4V alloy during heating and cooling were studied.The specimens were heated to 1273 K and subsequently cooled to room temperature.The hydrogen content is up to 0.8%(mass fraction).The hydrogen-induced dynamic phase transformations and the corresponding mechanisms were analyzed.When the hydrogen content increases,the β transus temperature significantly decreases and the magnitude decreases,and the volume fraction of β phase increases.During heating,the phase transformations in hydrogenated Ti-6Al-4V alloys can be divided into three stages,and the phase transformation order is δ→α+H2↑?δ+α′→βH?α′→αH+βH?αH→α+H2↑?α→β?βH→β+H2↑.In addition,the relationship among hydrogenation and Ms and Mf of α′ martensite were determined.展开更多
The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refi...The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refining primary α-Mg grains and Mg2Si particles. After being partially remelted, a semisolid microstructure with small and spheroidal primary α-Mg particles can be obtained. The microstructural evolution during partial remelting can be divided into four stages: the initial rapid coarsening, structural separation, spheroidization and final coarsening, which are essentially caused by the phase transformations of β→α, α+β→L and α→L, α→L, and α→L and L→α, respectively. The Mg2Si particles have not obvious effect on the general microstructural evolution steps, but can slower the evolution progress and change the coarsening mechanism. During partial remelting, Mg2Si particles first become blunt and then become spheroidal because of melting of their edges and corners, and finally are coarsened owing to Ostwald ripening.展开更多
Correlation between site occupation evolution of alloying elements in L12 phase and growth of DO22 phase in Ni75Al7.5V17.5 was studied using microscopic phase field model. The results demonstrate that the growing proc...Correlation between site occupation evolution of alloying elements in L12 phase and growth of DO22 phase in Ni75Al7.5V17.5 was studied using microscopic phase field model. The results demonstrate that the growing process of DO22 phase can be divided into two stages. At the early stage, composition in the centre part of L12 phase almost remains unchanged, and the nucleation and growth of DO22 phase is controlled by the decrease of interface between L12 phases. At the late stage, part of V for growth of DO22 phase is supplied from the centre part of L12 phase and mainly comes from Al sublattice, the excess Ni spared from the decreasing L12 phase migrates into the centre part of L12 phase and occupies the Ni sublattices exclusively, while the excess Al mainly occupies the Al sublattice. At the late stage, the growth of DO22 phase is controlled by the evolution of antisite atoms and ternary additions in the centre part of L12 phase.展开更多
Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al...Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al4.2V20.8. The results demonstrate that the growth of L12 phase can be divided into two stages: at the early stage, the composition of alloying elements in DO22 phase almost remains unchanged; at the late stage, the compositions of Ni and Al decrease while V increases in DO22 phase. Part of alloying elements for L12 phase growth are supplied from the site occupation evolution of alloying elements on three kinds of sublattices in DO22 phase. Ni is mainly supplied from V sublattice, and part of Al is supplied from NiⅠ and V sites at the centre of DO22 phase. The excessive V from the decreasing DO22 phase migrates into the centre of DO22 phase and mainly occupies V and NiII sites. It is the site occupation evolution of antisite atoms and ternary additions in DO22 phase that controls the growth rate of L12 phase at the late stage.展开更多
Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to eith...Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to either constructing nanostructure or intercalation pseudocapacitance with their intrinsic limitations.However,the fully bulk utilization of transition metal oxides is hindered by the poor understanding of atomic-level conversion reaction mechanism,particularly it is largely missing at clarifying how the phase transformation(conversion reaction)determines the electrochemical performance such as power density and cyclic stability.Herein,α-Fe_(2)O_(3) is a case provided to claim how the diffusional and diffusionless transformation determine the electrochemical behaviors,as of its conversion reaction mechanism with fully bulk utilization in alkaline electrolyte.Specifically,the discharge productα-FeOOH diffusional from Fe(OH)2 is structurally identified as the atomic-level arch criminal for its cyclic stability deterioration,whereas the counterpartδ-FeOOH is theoretically diffusionless-like,unlocking the full potential of the pseudocapacitance with fully bulk utilization.Thus,such pseudocapacitance,in proof-of-concept and termed as conversion pseudocapacitance,is achieved via diffusionless-like transformation.This work not only provides an atomic-level perspective to reassess the potential electrochemical performance of the transition metal oxides electrode materials based on conversion reaction mechanism but also debuts a new paradigm for pseudocapacitance.展开更多
The structure of the all-d-metal alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x=0–50)is investigated by using theoretical and experimental methods.The first-principles calculations indicate that the most stable structure of th...The structure of the all-d-metal alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x=0–50)is investigated by using theoretical and experimental methods.The first-principles calculations indicate that the most stable structure of the Ni_2MnV alloy is face-centered cubic (fcc)type structure with ferrimagnetic state and the equilibrium lattice constant is 3.60A,which is in agreement with the experimental result.It is remarkable that replacing partial Ni with Co can turn the alloy from the fcc structure to the B2-type Heusler structure as Co content x>37 by using the melting spinning method,implying that the d–d hybridization between Co/Mn elements and low-valent elements V stabilizes the Heusler structure.The Curie temperature T_(C) of all-dmetal Heuser alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x>37)increases almost linearly with the increase of Co due to that the interaction of Co–Mn is stronger than that of Ni–Mn.A magnetic transition from ferromagnetic state to weak magnetic state accompanying with grinding stress induced transformation from B2 to the dual-phase of B2 and fcc has been observed in these all-d-metal Heusler alloys.This phase transformation and magnetic change provide a guide to overcome the brittleness and make the all-d-metal Heusler alloy interesting in stress and magnetic driving structural transition.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3501002)State Key Program of National Natural Science Foundation of China(5203405)+3 种基金National Natural Science Foundation of China(51974220,52104383)National Key Research and Development Program of China(2021YFB3700902)Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06,2017ZDXM-GY-037)Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)。
文摘A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.
基金supported by the National Natural Science Foundation of China (Grant No.12072331)the Science Challenge Project (Grant No.TZ2018001)+2 种基金the Japan Society for the Promotion of Science (Grant Nos.17H04820 and 21H01677)the Foundation of the United Laboratory of High-Pressure Physics and Earthquake Scienceperformed under the approval of the Photon Factory Program Advisory Committee (Proposal Nos.2016S2-006 and 2020G680)。
文摘A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.
基金supported by the National Key Research and Development Program of China(No.2023YFC 2909000)the National Natural Science Foundation of China(No.52174240)+4 种基金the Major Science and Technology Projects of Xinjiang Uygur Autonomous Region(No.2023A03003-2)the XingLiao Talent Program of Liaoning Province(No.XLYC2203167)the Excellent Youth Fund Project of Liaoning Natural Science Foundation(No.2023JH3/10200010)the Fundamental Research Funds for the Central Universities(No.N23011026)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-15).
文摘Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distribution rate of divalent manganese(Mn^(2+))was observed at an optimal roasting temperature of 650℃,a roasting time of 25 min,and an H2 concentration of 20vol%;under these conditions.The manganese predominantly existed in the form of manganosite.This study investigated the generation mechanism of manganosite based on the reduction kinetics,phase transformation,and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate,and the optimal kinetic model for the reaction was the random nucleation and growth model(reaction order,n=3/2)with an activation energy(E_(a))of 24.119 kJ·mol^(−1).Throughout the mineral phase transformation,manganese oxide from the outer layer of particles moves inward to the core.In addition,pyrolusite follows the reduction sequence of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO,and the reduction of manganese oxides in each valence state simultaneously proceeds.These findings provide significant insight into the efficient and clean utilization of pyrolusite.
基金financially supported by the National Natural Science Foundation of China(Nos.U23A20540,52371127)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3035)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2024ZZTS0077)。
文摘Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.
基金financially supported by the National Key Research and Development Program of China (No.2023YFC2909000)the National Natural Science Foundation of China(No.52174240)the Open Foundation of State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2023-15)。
文摘The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korean Government(NRF-2021R1A4A1030318,NRF-2022R1C1C1011386,NRF-2020M3H4A1A03084258)supported by the"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)
文摘The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.
基金financially funded by Natural Science Basic Research Program of Shaanxi(grant number 2022JM-239)Key Research and Development Project of Shaanxi Provincial(grant number 2021LLRH-05–08)。
文摘To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.
基金sponsored by the Helmholtz Association,the China Scholarship Council(CSC)partially funded by the German Research Foundation,DFG(Project No.MA 5039/4-1)。
文摘Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.
基金Funded by the National Natural Science Foundation of China(No.52075058)the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX1112)the Research and Demonstration of Key Technologies for Forging High-performance Aluminum Alloys for Aerospace Applications(No.Z20210348)。
文摘An accurate flow stress model was established by considering the parameters of strain rate,strain and temperature as well asβ→a+βphase transformation in order to develop the plastic forming theory of TC18 titanium alloy.Firstly,the phase transition kinetics of TC18 titanium alloy during isothermal and continuous cooling at 1073 and 1273 K was studied by thermodynamic calculation,meanwhile,the relationship of volume fraction of phase transition with temperature and time was obtained.Constitutive models were calculated by investigating flow behaviors under hot compression tests with the strain rates of 0.001-1s^(-1) and temperatures of 973-1223 K in the singleβand a+βregions in TC18 titanium alloy,respectively.By combining the phase transformation dynamic kinetics with constitutive models,an accurate flow stress model was established,providing theoretical basis and data support for the hot forging of TC18 titanium alloy.
文摘Phase transformation is one of the factors that would significantly influence the ability to resist cavitation erosion of stainless steels. Due to the specific properties of duplex stainless steel, the heat treatment would bring about significant phase transformations. In this paper, we have examined the previous studies on the phase transition of stainless steel, including the literature on the classification of stainless steel, spinodal decomposition, sigma phase transformation, and cavitation erosion of double stainless steel. Through these literature investigations, the destruction of cavitation erosion on duplex stainless steel can be clearly known, and the causes of failure of duplex stainless steel in seawater can be clarified, thus providing a theoretical basis for subsequent scientific research. And the review is about to help assess the possibility of using bulk heat treatment to improve the cavitation erosion (CE) behaviour of the duplex stainless steel 7MoPLUS.
基金Project (51071056) supported by the National Natural Science Foundation of ChinaProjects (HEUCFR1132, HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.
基金Project (51104053) supported by the National Natural Science Foundation of ChinaProject (XL200921) supported by the Foundation Research funds for Hebei University of Science and Technology, China
文摘In order to remove or reduce the negative effect of MgO in calcium aluminate slags, the method of adding Na2O into calcium aluminate slags was studied and its effect on leaching mechanism was also analyzed. The results show that the alumina leaching efficiency of the calcium aluminate slag increases from 68.73% to 80.86% with Na2O content increasing from 0 to 4% when MgO content is 3%. The XRD results show that the quaternary compound C20A13M3S3 disappears when Na2O content increases to 4%. The addition of Na2O cannot remove the negative effect of MgO on leachability completely. XRD and EDS results indicate that Na2O can come into the lattice of 12CaO·7Al2O3 and promote the formation of 12CaO·7Al2O3
基金Project (51171104) supported by the National Natural Science Foundation of China
文摘Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure.
文摘TA2 pure titanium was chosen to research the interaction among deformation, recrystallization and phase transformation during hot compression. The samples were hot compressed by thermal simulation method with different processing parameters. Variant selection induced by stress during cooling after compression was found. The prismatical texture component which featured that the [0001] direction perpendicular to the compressing direction produced preferentially under the compressing stress. As a result, the transformedα phase possesses strong prismatical texture which is different with the basal texture of compressed αphase. The minimum elastic strain energy is demonstrated to be the main reason that causes the variant selection. Dynamic recrystallization behavior and microstructure evolution during hot compression were also studied.
基金Project(51275132)supported by the National Natural Science Foundation of China
文摘The hydrogen-induced microstructure evolution and phase transformations in Ti-6Al-4V alloy during heating and cooling were studied.The specimens were heated to 1273 K and subsequently cooled to room temperature.The hydrogen content is up to 0.8%(mass fraction).The hydrogen-induced dynamic phase transformations and the corresponding mechanisms were analyzed.When the hydrogen content increases,the β transus temperature significantly decreases and the magnitude decreases,and the volume fraction of β phase increases.During heating,the phase transformations in hydrogenated Ti-6Al-4V alloys can be divided into three stages,and the phase transformation order is δ→α+H2↑?δ+α′→βH?α′→αH+βH?αH→α+H2↑?α→β?βH→β+H2↑.In addition,the relationship among hydrogenation and Ms and Mf of α′ martensite were determined.
基金Project(G2010CB635106)supported by the National Basic Research Program of ChinaProject(NCET-10-0023)supported by the Program for New Century Excellent Talents in University of ChinaProject supported by the Program for Hongliu Outstanding Talents of Lanzhou University of Technology,China
文摘The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refining primary α-Mg grains and Mg2Si particles. After being partially remelted, a semisolid microstructure with small and spheroidal primary α-Mg particles can be obtained. The microstructural evolution during partial remelting can be divided into four stages: the initial rapid coarsening, structural separation, spheroidization and final coarsening, which are essentially caused by the phase transformations of β→α, α+β→L and α→L, α→L, and α→L and L→α, respectively. The Mg2Si particles have not obvious effect on the general microstructural evolution steps, but can slower the evolution progress and change the coarsening mechanism. During partial remelting, Mg2Si particles first become blunt and then become spheroidal because of melting of their edges and corners, and finally are coarsened owing to Ostwald ripening.
基金Projects (50941020, 10902086, 50875217, 20903075) supported by the National Natural Science Foundation of ChinaProjects (SJ08-ZT05, SJ08-B14) supported by the Natural Science Foundation of Shaanxi Province, China
文摘Correlation between site occupation evolution of alloying elements in L12 phase and growth of DO22 phase in Ni75Al7.5V17.5 was studied using microscopic phase field model. The results demonstrate that the growing process of DO22 phase can be divided into two stages. At the early stage, composition in the centre part of L12 phase almost remains unchanged, and the nucleation and growth of DO22 phase is controlled by the decrease of interface between L12 phases. At the late stage, part of V for growth of DO22 phase is supplied from the centre part of L12 phase and mainly comes from Al sublattice, the excess Ni spared from the decreasing L12 phase migrates into the centre part of L12 phase and occupies the Ni sublattices exclusively, while the excess Al mainly occupies the Al sublattice. At the late stage, the growth of DO22 phase is controlled by the evolution of antisite atoms and ternary additions in the centre part of L12 phase.
基金Projects(51174168,51274167)supported by the National Natural Science Foundation of ChinaProject(2013M532082)supported by Postdoctoral Science Foundation of ChinaProjects(13R21421700,13R21421800)supported by the Postdoctoral Science Foundation of Shanghai,China
文摘Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al4.2V20.8. The results demonstrate that the growth of L12 phase can be divided into two stages: at the early stage, the composition of alloying elements in DO22 phase almost remains unchanged; at the late stage, the compositions of Ni and Al decrease while V increases in DO22 phase. Part of alloying elements for L12 phase growth are supplied from the site occupation evolution of alloying elements on three kinds of sublattices in DO22 phase. Ni is mainly supplied from V sublattice, and part of Al is supplied from NiⅠ and V sites at the centre of DO22 phase. The excessive V from the decreasing DO22 phase migrates into the centre of DO22 phase and mainly occupies V and NiII sites. It is the site occupation evolution of antisite atoms and ternary additions in DO22 phase that controls the growth rate of L12 phase at the late stage.
基金This research is supported by the National Natural Science Foundation of China (51932003,51872115)2020 International Cooperation Project of the Department of Science and Technology of Jilin Province (20200801001GH)+5 种基金Program for the Development of Science and Technology of Jilin Province (20190201309JC)the Jilin Province/Jilin University Co-Construction Project-Funds for New Materials (SXGJSF2017-3,Branch-2/440050316A36)Project for Self-innovation Capability Construction of Jilin Province Development and Reform Commission (2021C026)the Open Project Program of Wuhan National Laboratory for Optoelectronics (2018WNLOKF022)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT,2017TD-09)the Fundamental Research Funds for the Central Universities JLU,and“Double-First Class”Discipline for Materials Science&Engineering.
文摘Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to either constructing nanostructure or intercalation pseudocapacitance with their intrinsic limitations.However,the fully bulk utilization of transition metal oxides is hindered by the poor understanding of atomic-level conversion reaction mechanism,particularly it is largely missing at clarifying how the phase transformation(conversion reaction)determines the electrochemical performance such as power density and cyclic stability.Herein,α-Fe_(2)O_(3) is a case provided to claim how the diffusional and diffusionless transformation determine the electrochemical behaviors,as of its conversion reaction mechanism with fully bulk utilization in alkaline electrolyte.Specifically,the discharge productα-FeOOH diffusional from Fe(OH)2 is structurally identified as the atomic-level arch criminal for its cyclic stability deterioration,whereas the counterpartδ-FeOOH is theoretically diffusionless-like,unlocking the full potential of the pseudocapacitance with fully bulk utilization.Thus,such pseudocapacitance,in proof-of-concept and termed as conversion pseudocapacitance,is achieved via diffusionless-like transformation.This work not only provides an atomic-level perspective to reassess the potential electrochemical performance of the transition metal oxides electrode materials based on conversion reaction mechanism but also debuts a new paradigm for pseudocapacitance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51671024 and 52088101)State Key Lab of Advanced Metals and Materials(Grant No.2019Z12)the Fundamental Research Funds for the Central Universities(Grant No.FRF-BD-20-12A)。
文摘The structure of the all-d-metal alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x=0–50)is investigated by using theoretical and experimental methods.The first-principles calculations indicate that the most stable structure of the Ni_2MnV alloy is face-centered cubic (fcc)type structure with ferrimagnetic state and the equilibrium lattice constant is 3.60A,which is in agreement with the experimental result.It is remarkable that replacing partial Ni with Co can turn the alloy from the fcc structure to the B2-type Heusler structure as Co content x>37 by using the melting spinning method,implying that the d–d hybridization between Co/Mn elements and low-valent elements V stabilizes the Heusler structure.The Curie temperature T_(C) of all-dmetal Heuser alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x>37)increases almost linearly with the increase of Co due to that the interaction of Co–Mn is stronger than that of Ni–Mn.A magnetic transition from ferromagnetic state to weak magnetic state accompanying with grinding stress induced transformation from B2 to the dual-phase of B2 and fcc has been observed in these all-d-metal Heusler alloys.This phase transformation and magnetic change provide a guide to overcome the brittleness and make the all-d-metal Heusler alloy interesting in stress and magnetic driving structural transition.