One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ...One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.展开更多
Objective: The human cluster of differentiation(CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer(...Objective: The human cluster of differentiation(CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer(NK) cells targeting hematologic malignancies(HMs).Methods: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine(PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients.Results: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS–CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an “exhausted” phenotype of intratumoral NK cells in patients with HMs or solid tumors.Conclusions: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.展开更多
Cancer immunotherapy has emerged as a promising strategy for the treatment of cancer,with the tumor microenvironment(TME)playing a pivotal role in modulating the immune response.CD47,a cell surface protein,has been id...Cancer immunotherapy has emerged as a promising strategy for the treatment of cancer,with the tumor microenvironment(TME)playing a pivotal role in modulating the immune response.CD47,a cell surface protein,has been identified as a crucial regulator of the TME and a potential therapeutic target for cancer therapy.However,the precise functions and implications of CD47 in the TME during immunotherapy for cancer patients remain incompletely understood.This comprehensive review aims to provide an overview of CD47’s multifaced role in TME regulation and immune evasion,elucidating its impact on various types of immunotherapy outcomes,including checkpoint inhibitors and CAR T-cell therapy.Notably,CD47-targeted therapies offer a promising avenue for improving cancer treatment outcomes,especially when combined with other immunotherapeutic approaches.The review also discusses current and potential CD47-targeted therapies being explored for cancer treatment and delves into the associated challenges and opportunities inherent in targeting CD47.Despite the demonstrated effectiveness of CD47-targeted therapies,there are potential problems,including unintended effects on healthy cells,hematological toxicities,and the development if resistance.Consequently,further research efforts are warranted to fully understand the underlying mechanisms of resistance and to optimize CD47-targeted therapies through innovative combination approaches,ultimately improving cancer treatment outcomes.Overall,this comprehensive review highlights the significance of CD47 as a promising target for cancer immunotherapy and provides valuable insight into the challenges and opportunities in developing effective CD47-targeted therapies for cancer treatment.展开更多
A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated...A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated using X-ray diffraction(XRD),Raman spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Solid UV reflectance spectra testing found that CdS/Fe_(3)O_(4)nanocomposites had good light absorption throughout the spectral range,promoting their photocatalytic properties.Under visible light irradiation,CdS/Fe_(3)O_(4)(2∶5)with a mass ratio of 2∶5 exhibited excellent photocatalytic perfor-mance,with a degradation rate of 98.8%for rhodamine B.Furthermore,after five cycles of photocatalytic degrada-tion reaction,the rhodamine B degradation rate remained at 96.2%,indicating that the photocatalysts have good pho-tocatalytic stability.展开更多
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expresse...CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.展开更多
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
Porcine reproductive and respiratory syndrome(PRRS)is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus(PRRSV),resulting in substantial economic losses in the swine industry.Modifyin...Porcine reproductive and respiratory syndrome(PRRS)is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus(PRRSV),resulting in substantial economic losses in the swine industry.Modifying the CD163 SRCR5 domain,either through deletion or substitution,can eff1ectively confer resistance to PRRSV infection in pigs.However,large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance.Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs.In the current study,we identified a specific functional amino acid in CD163 that influences PRRSV proliferation.Viral infection experiments conducted on Marc145 and PK-15CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV(HP-PRRSV)proliferation by preventing viral binding and entry.Furthermore,individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type(WT)pigs,confirming effective resistance to HP-PRRSV.Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs.These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs,providing novel insights into controlling future PRRSV outbreaks.展开更多
Two major problems facing agriculture at present are soil pollution and the disposal of solid wastes generated during plant growth. The method of preparing biochar from solid wastes produced by plants is a means of ma...Two major problems facing agriculture at present are soil pollution and the disposal of solid wastes generated during plant growth. The method of preparing biochar from solid wastes produced by plants is a means of maximizing the use of resources to combat the problem of soil pollution. In this study, we did not choose straw in the traditional sense but the waste branches from grape pruning, which has higher lignin cellulose, as the raw material. The biochar derived from grape branches pyrolyzed at 300˚C for two hours was utilized as a raw material to prepare modified biochar with varying concentrations of phosphoric acid. The adsorption performance and mechanism of Cd<sup>2 </sup> were explored through experiments involving different concentrations, addition amounts, reaction times, kinetic analyses, and isothermal adsorption tests. The findings indicated that the optimal adsorption of Cd<sup>2 </sup> occurred with a 20% phosphoric acid concentration, achieving the highest adsorption rate of 84.62%. At a dosage of 10 g/L, the maximum adsorption capacity reached 7.02 mg/g. The adsorption kinetics and isothermal adsorption of Cd<sup>2 </sup> on biochar modified with 0.2% phosphoric acid (0.2 PB) closely followed the pseudo-first-order kinetics model (R<sup>2</sup> > 0.98) and the Freundlich model (R<sup>2</sup> > 0.97), respectively. This suggests that the adsorption process involves both physical and chemical mechanisms. SEM and FTIR analyses revealed that phosphoric acid modification primarily increased the biochar’s specific surface area and enhanced certain original functional groups. The adsorption process predominantly involved rapid ion diffusion and chemical adsorption, as confirmed by kinetic analysis and isothermal adsorption model analysis. In summary, the adsorption efficiency of 0.2 PB significantly improved, showing potential and feasibility for heavy metal remediation in soil. This supports the environmentally friendly concept of “treating waste with waste”.展开更多
Cellular senescence is a signal transduction process which maintained genomic stability and stopped mammalian cell growth. Furthermore, cellular senescence induces a protective response to a variety of DNA damage. How...Cellular senescence is a signal transduction process which maintained genomic stability and stopped mammalian cell growth. Furthermore, cellular senescence induces a protective response to a variety of DNA damage. However, this process is also associated with apoptosis, upregulated secretion of inflammatory cytokine, and promoted surrounding tissue damage. When cellular senescence accumulates to a certain extent, it triggers geriatric diseases, such as chronic inflammation, immune senescence-associated tumors and incontrollable infections. Cellular senescence gene SENEX, which was cloned in 2004, has been demonstrated to play a unique gatekeeper function in human endothelial cells when stress-induced pre-mature senescence and apoptosis occurr. The phenomenon that CD4+CD25+ Treg cells accumulated in the aged population has been well studied in recent years. Now Treg accumulation related to immune-pathology has attracted more interest. CD4+CD25+ Treg did not decline and age, but accumulated and suppressed immunoreaction. The enhanced Treg number and function may be associated with stress-induced premature senescence-mediated unique cellular senescence protection mechanisms, and SENEX may play a critical role in this process. In this article, we summarize the cellular senescence and SENEX gene in the accumulation and functional activity of CD4+CD25+ Treg in the elderly.展开更多
Background:Chronic wounds pose a significant surgical challenge,often requiring traditional treatments with limited efficacy.This study explores the promising impact of Shixiang plaster,a classic Chinese ointment,on w...Background:Chronic wounds pose a significant surgical challenge,often requiring traditional treatments with limited efficacy.This study explores the promising impact of Shixiang plaster,a classic Chinese ointment,on wound healing.We investigated the cluster of differentiation 31(CD31)expression,serum fibronectin(FN),and vascular endothelial growth factor(VEGF)levels in SPF rats with induced wounds to elucidate the mechanism behind Shixiang plaster’s effectiveness.We investigated the effect and explored the role of Shixiang plaster on the expression of CD31,serum FN,and VEGF in chronic wounds.Methods:The study involved 36 SPF rats divided into model,rb-bFGF,and Shixiang plaster groups.Penicillin was injected into the rats before modelling for 3 days to prevent infection.The skin was excised 2 cm below the horizontal line of the inferior border of the shoulder bone in the middle of the rat column up to the deep fascial layer and inoculated with a certain concentration of Staphylococcus aureus;the wound was covered aseptically for 3 days.The trauma area of the rats was observed at 3,7,and 14 days,respectively.Histopathology was observed using haematoxylin eosin and Masson staining.CD31 expression was detected using immunohistochemistry staining.FN and VEGF expression was detected using serum ELISA.Statistical analyses were carried out by the method of SPSS.Results:Regarding wound morphology,at 3 days,the recovery area of the Shixiang plaster group was larger than that of the other two groups,at 7 days,the wound healing rate of the Shixiang plaster group was significantly higher,and at 14 days,the wounds of the Shixiang plaster group had been mostly healed,with a healing rate of 98.3%.Haematoxylin eosin staining revealed a large amount of granulation tissue at 3 days in the Shixiang plaster group,and the epidermal scales disappeared at 14 days,with thinner epidermal thickness at 1 lesion and a large reduction in inflammatory cell infiltration.Masson staining showed that at 3,7,and 14 days,blue staining was the most abundant and deeper in the Shixiang plaster group,with richer collagen and a compact tissue matrix.Immunohistochemical testing showed strong positive expression of CD31 in the Shixiang plaster group,with abundant neovascularisation and large official lumens extending towards the surface of the wound.Statistically significant elevated expression of FN at 7 and 14 days was determined by ELISA in the Shixiang plaster group,and VEGF expression was significantly increased at 7 days,but expression had been expressed at a low level at 14 days.Conclusion:Shixiang plaster exhibits remarkable efficacy in healing chronic wounds.The proposed mechanism involves FN’s promotion of angiogenesis and cell proliferation,VEGF’s impact on angiogenesis and inflammation,and CD31’s regulatory role in inhibiting inflammation while promoting angiogenesis.展开更多
Objective Triple-negative breast cancer(TNBC)poses a significant challenge for treatment efficacy.CD8+T cells,which are pivotal immune cells,can be effectively analyzed for differential gene expression across diverse ...Objective Triple-negative breast cancer(TNBC)poses a significant challenge for treatment efficacy.CD8+T cells,which are pivotal immune cells,can be effectively analyzed for differential gene expression across diverse cell populations owing to rapid advancements in sequencing technology.By leveraging these genes,our objective was to develop a prognostic model that accurately predicts the prognosis of patients with TNBC and their responsiveness to immunotherapy.Methods Sample information and clinical data of TNBC were sourced from The Cancer Genome Atlas and METABRIC databases.In the initial stage,we identified 67 differentially expressed genes associated with immune response in CD8+T cells.Subsequently,we narrowed our focus to three key genes,namely CXCL13,GBP2,and GZMB,which were used to construct a prognostic model.The accuracy of the model was assessed using the validation set data and receiver operating characteristic(ROC)curves.Furthermore,we employed various methods,including Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway,immune infiltration,and correlation analyses with CD274(PD-L1)to explore the model's predictive efficacy in immunotherapeutic responses.Additionally,we investigated the potential underlying biological pathways that contribute to divergent treatment responses.Results We successfully developed a model capable of predicting the prognosis of patients with TNBC.The areas under the curve(AUC)values for the 1-,3-,and 5-year survival predictions were 0.618,0.652,and 0.826,respectively.Employing this risk model,we stratified the samples into high-and low-risk groups.Through KEGG enrichment analysis,we observed that the high-risk group predominantly exhibited enrichment in metabolism-related pathways such as drug and chlorophyll metabolism,whereas the low-risk group demonstrated significant enrichment in cytokine pathways.Furthermore,immune landscape analysis revealed noteworthy variations between(PD-L1)expression and risk scores,indicating that our model effectively predicted the response of patients to immune-based treatments.Conclusion Our study demonstrates the potential of CXCL13,GBP2,and GZMB as prognostic indicators of clinical outcomes and immunotherapy responses in patients with TNBC.These findings provide valuable insights and novel avenues for developing immunotherapeutic approaches targeting TNBC.展开更多
Background:Chimeric antigen receptor T(CAR-T)cell therapy has achieved marked therapeutic success in ameliorating hematological malignancies.However,there is an extant void in the clinical guidelines concerning the mo...Background:Chimeric antigen receptor T(CAR-T)cell therapy has achieved marked therapeutic success in ameliorating hematological malignancies.However,there is an extant void in the clinical guidelines concerning the most effective chemotherapy regimen prior to chimeric antigen receptor T(CAR-T)cell therapy,as well as the optimal timing for CAR-T cell infusion post-chemotherapy.Materials and Methods:We employed cell-derived tumor xenograft(CDX)murine models to delineate the optimal pre-conditioning chemotherapy regimen and timing for CAR-T cell treatment.Furthermore,transcriptome sequencing was implemented to identify the therapeutic targets and elucidate the underlying mechanisms governing the treatment regimen.Results:Our preclinical in vivo evaluation determined that a combination of cyclophosphamide and fludarabine,followed by the infusion of CD19 CAR-T cells five days subsequent to the chemotherapy,exerts the most efficacious therapeutic effect in B-cell hematological malignancies.Concurrently,RNA-seq data indicated that the therapeutic efficacy predominantly perturbs tumor cell metabolism,primarily through the inhibition of key mitochondrial targets,such as C-Jun Kinase enzyme(C-JUN).Conclusion:In summary,the present study offers critical clinical guidance and serves as an authoritative reference for the deployment of CD19 CAR-T cell therapy in the treatment of B-cell hematological malignancies.展开更多
Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate t...Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge.Here,density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO_(4)atomic-layer(110)/(110)facet S-scheme heterojunction.Subsequently,a CdS quantum dots/InVO_(4)atomic-layer was synthesized by in-situ loading of CdS quantum dots with(110)facets onto the(110)facets of InVO_(4)atomic-layer.As a result of the deliberately constructed built-in electric field between the adjoining facets,we obtain a remarkably enhanced photocatalytic degradation rate for ethylene.This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO_(4).In-situ irradiated X-ray photoelectron spectroscopy,photoluminescence and time-resolved photoluminescence measurements were carried out.These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers,and results in the formation of S-scheme charge transfer pathways.The reaction mechanism of the photocatalytic C_(2)H_(4)oxidation is investigated by in-situ electron paramagnetic resonance.This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.展开更多
Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help ...Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help better understand local anti-tumor immune responses and estimate the effect of immunotherapy.Methods:Gens related to CD8+T cells were identified by cluster analysis based on the single-cell sequencing data of three LUAD tissues and their paired normal tissues.Weighted gene co-expression network analysis(WGCNA),consensus clustering,differential expression analysis,least absolute shrinkage and selection operator(LASSO)and Cox regression analysis were conducted to classify molecular subtypes for LUAD and to develop a risk model using prognostic genes related to CD8+T cells.Expression of the genes in the prognostic model,their effects on tumor cell invasion,and interactions with CD8+T cells were verified by cell experiments.Results:This study defined two LUAD clusters(CD8+0 and CD8+1)based on CD8+T cells,with cluster CD8+0 being significantly associated with the prognosis of LUAD.Three heterogeneous subtypes(clusters 1,2,and 3)differing in prognosis,genome mutation events,and immune status were categorized using 42 prognostic genes.A prognostic model created based on 11 significant genes(including CD200R1,CLEC17A,ZC3H12D,GNG7,SNX30,CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2,and KRT81)was able to independently estimate the death risk for patients in different LUAD cohorts.Moreover,the model also showed general applicability in external validation cohorts.Low-risk patients could benefit more from taking immunotherapy and were significantly related to the resistance to anticancer drugs.The results from cell experiments demonstrated that the expression of CD200R1,CLEC17A,ZC3H12D,GNG7,and SNX30 was significantly downregulated,while that of CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2 and KRT81 was upregulated in LUAD cells.Inhibition of CD200R1 greatly increased the invasiveness of the LUAD cells,but inhibiting CDCP1 expression weakened the invasion ability of LUAD cells.Conclusion:This study defined two prognostic CD8+T cell clusters and classified three heterogeneous molecular subtypes for LUAD.A prognostic model predictive of the potential effects of immunotherapy on LUAD patients was developed.展开更多
Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Me...Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Methods:Fresh ESCC tissues were collected and grouped according to the infiltration density of CD8+T cells.After the transcriptome sequencing on these samples and the combined analyses with The Cancer Genome Atlas(TCGA)ESCC data,a secreted protein DEFB1 was selected to explore its potential role in the infiltration of CD8+T cells.Bioinformatics analyses,histological verification and in vitro experiments were then performed.Results:DEFB1 was highly expressed in ESCC,and the high expression of DEFB1 was an independent risk factor for overall survival.Since the up-regulation or down-regulation of DEFB1 did not affect the proliferation,migration and apoptosis of ESCC cells,we speculated that the oncogenic effect of DEFB1 was achieved by regulating microenvironmental characteristics.Bioinformatics analyses suggested that DEFB1 might play a major role in the inflammatory response and anti-tumor immune response,and correlate to the infiltration of immature dendritic cell(imDC)in ESCC.Histological analyses further confirmed that there were less CD8+T cells infiltrated,less CD83+mature DC(mDC)infiltrated and more CD1a+imDC infiltrated in those ESCC samples with high expression of DEFB1.After the treatment with recombinant DEFB1 protein,the maturation of DC was hindered significantly,followed by the impairment of the killing effects of T cells in both 2D and 3D culture in vitro.Conclusions:Tumor-derived DEFB1 can inhibit the maturation of DC and weaken the function of CD8+T cells,accounting for the immune tolerance in ESCC.The role of DEFB1 in ESCC deserves further exploration.展开更多
Objective:To explore the expression of CD151 in gastric cancer tissues and its clinical significance.Methods:Immunohistochemistry was employed to detect the expression of CD151 in gastric cancer tissues and adjacent n...Objective:To explore the expression of CD151 in gastric cancer tissues and its clinical significance.Methods:Immunohistochemistry was employed to detect the expression of CD151 in gastric cancer tissues and adjacent normal tissues.The relationship between CD151 expression and the clinicopathological characteristics of gastric cancer was analyzed.Results:The expression of CD151 in gastric cancer tissues was significantly higher than in adjacent normal tissues(P<0.05).It was associated with the degree of differentiation,depth of invasion,lymph node metastasis,and TNM staging of gastric cancer.The survival time of patients with high CD151 expression was significantly shorter than that of those with low expression(P<0.05).Conclusion:High expression of CD151 in gastric cancer tissues is correlated with the malignant biological behavior of gastric cancer and can serve as an indicator for evaluating the prognosis of gastric cancer.展开更多
以前,我从未想过听CD会过时,但在无载体媒体时代,情况已经如此。幸运的是,一群执着的音响发烧友还在坚持。ORERA Consonance Re horee a OPERA Consonance Reference CDS8这款CD、数码流播放器,不仅可以播放CD,而且它是以非常高的水准...以前,我从未想过听CD会过时,但在无载体媒体时代,情况已经如此。幸运的是,一群执着的音响发烧友还在坚持。ORERA Consonance Re horee a OPERA Consonance Reference CDS8这款CD、数码流播放器,不仅可以播放CD,而且它是以非常高的水准来播放CD,名副其实的好产品,可以与Advance Acoustics、Creek、AVM等这些品牌的产品齐名。展开更多
Manganese(Mn)doped cadmium sulphide(Cd S)nanoparticles were synthesized using a chemical method.It was possible to decrease Cd S:Mn particle size by increasing Mn concentration.Investigation techniques such as ultravi...Manganese(Mn)doped cadmium sulphide(Cd S)nanoparticles were synthesized using a chemical method.It was possible to decrease Cd S:Mn particle size by increasing Mn concentration.Investigation techniques such as ultraviolet-visible(UV-Vis)absorption spectroscopy and photoluminescence(PL)spectroscopy were used to determine optical properties of Cd S:Mn nanoparticles.Size quantization effect was observed in UV-Vis absorption spectra.Quantum efficiency for luminescence or the internal magnetic field strength was increased by doping Cd S nanoparticles with Mn element.Orange emission was observed at wavelength~630 nm due to ^(4)T_1→^(6)A_1 transition.Isolated Mn~(2+)ions arranged in tetrahedral coordination are mainly responsible for luminescence.Luminescence quenching and the effect of Mn doping on hyperfine interactions in the case of Cd S nanoparticles were also discussed.The corresponding weight percentage of Mn element actually incorporated in doping process was determined by atomic absorption spectroscopy(AAS).Crystallinity was checked and the average size of nanoparticles was estimated using the X-ray diffraction(XRD)technique.Cd S:Mn nanoparticles show ferromagnetism at room temperature.Transmission electron microscopy(TEM)images show spherical clusters of various sizes and selected area electron diffraction(SAED)patterns show the polycrystalline nature of the clusters.The electronic states of diluted magnetic semiconductors(DMS)ofⅡ-Ⅵgroup Cd S nanoparticles give them great potential for applications due to quantum confinement.In this study,experimental results and discussions on these aspects have been given.展开更多
Objective:This study aimed to compare the efficacy of anti-CD19 chimeric antigen receptor T cells(CAR-T cells)versus chemotherapy plus donor lymphocyte infusion(chemo-DLI)for treating relapsed CD 19-positive B-cell ac...Objective:This study aimed to compare the efficacy of anti-CD19 chimeric antigen receptor T cells(CAR-T cells)versus chemotherapy plus donor lymphocyte infusion(chemo-DLI)for treating relapsed CD 19-positive B-cell acute lymphoblastic leukemia(B-ALL)after allogeneic hematopoietic stem cell transplantation(allo-HSCT).Methods:Clinical data of 43 patients with B-ALL who relapsed after allo-HSCT were retrospectively analyzed.Twenty-two patients were treated with CAR-T cells(CAR-T group),and 21 with chemotherapy plus DLI(chemo-DLI group).The complete remission(CR)and minimal residual disease(MRD)-negative CR rates,leukemia-free survival(LFS)rate,overall survival(OS)rate,and incidence of acute graft-versus-host disease(aGVHD),cytokine release syndrome(CRS)and immune effector cell-associated neurotoxicity syndrome(ICANS)were compared between the two groups.Results:The CR and MRD-negative CR rates in the CAR-T group(77.3%and 61.5%)were significantly higher than those in the chemo-DLI group(38.1%and 23.8%)(P=0.008 and P=0.003).The 1-and 2-year LFS rates in the CAR-T group were superior to those in the chemo-DLI group:54.5%and 50.0%vs.9.5%and 4.8%(P=0.0001 and P=0.00004).The 1-and 2-year OS rates in the CAR-T versus chemo-DLI group were 59.1%and 54.5%vs.19%and 9.5%(P=0.011 and P=0.003).Six patients(28.6%)with grade 2-4 aGVHD were identified in the chemo-DLI group.Two patients(9.1%)in the CAR-T group developed grade 1-2 aGVHD.Nineteen patients(86.4%)developed CRS in the CAR-T group,comprising grade 1-2 CRS in 13 patients(59.1%)and grade 3 CRS in 6 patients(27.3%).Two patients(9.1%)developed grade 1-2 ICANS.Conclusion:Donor-derived anti-CD19 CAR-T-cell therapy may be better,safer,and more effective than chemo-DLI for B-ALL patients who relapse after allo-HSCT.展开更多
基金supported by National Natural Science Foundation of China (52275551)Shanxi Scholarship Council of China (2021-117)。
文摘One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.
基金supported by the National Key R&D Program of China (2019YFA0508502/3 and 2021YFC2300604)the Natural Science Foundation of China (Reference numbers 82388201, 82241216, and 32270963)+1 种基金the Research Funds of Center for Advanced Interdisciplinary Science and Biomedicine of IHM (QYZD20220008)the Anhui Key Research and Development Plan (Reference number 2023z04020011)。
文摘Objective: The human cluster of differentiation(CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer(NK) cells targeting hematologic malignancies(HMs).Methods: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine(PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients.Results: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS–CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an “exhausted” phenotype of intratumoral NK cells in patients with HMs or solid tumors.Conclusions: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.
基金the Huzhou Science and Technology Bureau,Zhejiang Province,China(2020GZ41).
文摘Cancer immunotherapy has emerged as a promising strategy for the treatment of cancer,with the tumor microenvironment(TME)playing a pivotal role in modulating the immune response.CD47,a cell surface protein,has been identified as a crucial regulator of the TME and a potential therapeutic target for cancer therapy.However,the precise functions and implications of CD47 in the TME during immunotherapy for cancer patients remain incompletely understood.This comprehensive review aims to provide an overview of CD47’s multifaced role in TME regulation and immune evasion,elucidating its impact on various types of immunotherapy outcomes,including checkpoint inhibitors and CAR T-cell therapy.Notably,CD47-targeted therapies offer a promising avenue for improving cancer treatment outcomes,especially when combined with other immunotherapeutic approaches.The review also discusses current and potential CD47-targeted therapies being explored for cancer treatment and delves into the associated challenges and opportunities inherent in targeting CD47.Despite the demonstrated effectiveness of CD47-targeted therapies,there are potential problems,including unintended effects on healthy cells,hematological toxicities,and the development if resistance.Consequently,further research efforts are warranted to fully understand the underlying mechanisms of resistance and to optimize CD47-targeted therapies through innovative combination approaches,ultimately improving cancer treatment outcomes.Overall,this comprehensive review highlights the significance of CD47 as a promising target for cancer immunotherapy and provides valuable insight into the challenges and opportunities in developing effective CD47-targeted therapies for cancer treatment.
文摘A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated using X-ray diffraction(XRD),Raman spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Solid UV reflectance spectra testing found that CdS/Fe_(3)O_(4)nanocomposites had good light absorption throughout the spectral range,promoting their photocatalytic properties.Under visible light irradiation,CdS/Fe_(3)O_(4)(2∶5)with a mass ratio of 2∶5 exhibited excellent photocatalytic perfor-mance,with a degradation rate of 98.8%for rhodamine B.Furthermore,after five cycles of photocatalytic degrada-tion reaction,the rhodamine B degradation rate remained at 96.2%,indicating that the photocatalysts have good pho-tocatalytic stability.
基金supported by the National Major Project of Research and Development,No.2022YFA1105500(to SZ)the National Natural Science Foundation of China,No.81870975(to SZ)Innovation Program for Graduate Students in Jiangsu Province of China,No.KYCX223335(to MZ)。
文摘CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.
基金Major Scientific and Technological Projects in Agricultural Biological Breeding of China(2023ZD0404302)Youth Program of National Natural Science Foundation of China(32202754)。
文摘Porcine reproductive and respiratory syndrome(PRRS)is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus(PRRSV),resulting in substantial economic losses in the swine industry.Modifying the CD163 SRCR5 domain,either through deletion or substitution,can eff1ectively confer resistance to PRRSV infection in pigs.However,large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance.Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs.In the current study,we identified a specific functional amino acid in CD163 that influences PRRSV proliferation.Viral infection experiments conducted on Marc145 and PK-15CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV(HP-PRRSV)proliferation by preventing viral binding and entry.Furthermore,individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type(WT)pigs,confirming effective resistance to HP-PRRSV.Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs.These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs,providing novel insights into controlling future PRRSV outbreaks.
文摘Two major problems facing agriculture at present are soil pollution and the disposal of solid wastes generated during plant growth. The method of preparing biochar from solid wastes produced by plants is a means of maximizing the use of resources to combat the problem of soil pollution. In this study, we did not choose straw in the traditional sense but the waste branches from grape pruning, which has higher lignin cellulose, as the raw material. The biochar derived from grape branches pyrolyzed at 300˚C for two hours was utilized as a raw material to prepare modified biochar with varying concentrations of phosphoric acid. The adsorption performance and mechanism of Cd<sup>2 </sup> were explored through experiments involving different concentrations, addition amounts, reaction times, kinetic analyses, and isothermal adsorption tests. The findings indicated that the optimal adsorption of Cd<sup>2 </sup> occurred with a 20% phosphoric acid concentration, achieving the highest adsorption rate of 84.62%. At a dosage of 10 g/L, the maximum adsorption capacity reached 7.02 mg/g. The adsorption kinetics and isothermal adsorption of Cd<sup>2 </sup> on biochar modified with 0.2% phosphoric acid (0.2 PB) closely followed the pseudo-first-order kinetics model (R<sup>2</sup> > 0.98) and the Freundlich model (R<sup>2</sup> > 0.97), respectively. This suggests that the adsorption process involves both physical and chemical mechanisms. SEM and FTIR analyses revealed that phosphoric acid modification primarily increased the biochar’s specific surface area and enhanced certain original functional groups. The adsorption process predominantly involved rapid ion diffusion and chemical adsorption, as confirmed by kinetic analysis and isothermal adsorption model analysis. In summary, the adsorption efficiency of 0.2 PB significantly improved, showing potential and feasibility for heavy metal remediation in soil. This supports the environmentally friendly concept of “treating waste with waste”.
文摘Cellular senescence is a signal transduction process which maintained genomic stability and stopped mammalian cell growth. Furthermore, cellular senescence induces a protective response to a variety of DNA damage. However, this process is also associated with apoptosis, upregulated secretion of inflammatory cytokine, and promoted surrounding tissue damage. When cellular senescence accumulates to a certain extent, it triggers geriatric diseases, such as chronic inflammation, immune senescence-associated tumors and incontrollable infections. Cellular senescence gene SENEX, which was cloned in 2004, has been demonstrated to play a unique gatekeeper function in human endothelial cells when stress-induced pre-mature senescence and apoptosis occurr. The phenomenon that CD4+CD25+ Treg cells accumulated in the aged population has been well studied in recent years. Now Treg accumulation related to immune-pathology has attracted more interest. CD4+CD25+ Treg did not decline and age, but accumulated and suppressed immunoreaction. The enhanced Treg number and function may be associated with stress-induced premature senescence-mediated unique cellular senescence protection mechanisms, and SENEX may play a critical role in this process. In this article, we summarize the cellular senescence and SENEX gene in the accumulation and functional activity of CD4+CD25+ Treg in the elderly.
基金supported by the Guizhou Provincial Traditional Chinese Medicine Administration Traditional Chinese Medicine and Ethnic Medicine Scientific Research Project(Project number:QZYY-2023-013).
文摘Background:Chronic wounds pose a significant surgical challenge,often requiring traditional treatments with limited efficacy.This study explores the promising impact of Shixiang plaster,a classic Chinese ointment,on wound healing.We investigated the cluster of differentiation 31(CD31)expression,serum fibronectin(FN),and vascular endothelial growth factor(VEGF)levels in SPF rats with induced wounds to elucidate the mechanism behind Shixiang plaster’s effectiveness.We investigated the effect and explored the role of Shixiang plaster on the expression of CD31,serum FN,and VEGF in chronic wounds.Methods:The study involved 36 SPF rats divided into model,rb-bFGF,and Shixiang plaster groups.Penicillin was injected into the rats before modelling for 3 days to prevent infection.The skin was excised 2 cm below the horizontal line of the inferior border of the shoulder bone in the middle of the rat column up to the deep fascial layer and inoculated with a certain concentration of Staphylococcus aureus;the wound was covered aseptically for 3 days.The trauma area of the rats was observed at 3,7,and 14 days,respectively.Histopathology was observed using haematoxylin eosin and Masson staining.CD31 expression was detected using immunohistochemistry staining.FN and VEGF expression was detected using serum ELISA.Statistical analyses were carried out by the method of SPSS.Results:Regarding wound morphology,at 3 days,the recovery area of the Shixiang plaster group was larger than that of the other two groups,at 7 days,the wound healing rate of the Shixiang plaster group was significantly higher,and at 14 days,the wounds of the Shixiang plaster group had been mostly healed,with a healing rate of 98.3%.Haematoxylin eosin staining revealed a large amount of granulation tissue at 3 days in the Shixiang plaster group,and the epidermal scales disappeared at 14 days,with thinner epidermal thickness at 1 lesion and a large reduction in inflammatory cell infiltration.Masson staining showed that at 3,7,and 14 days,blue staining was the most abundant and deeper in the Shixiang plaster group,with richer collagen and a compact tissue matrix.Immunohistochemical testing showed strong positive expression of CD31 in the Shixiang plaster group,with abundant neovascularisation and large official lumens extending towards the surface of the wound.Statistically significant elevated expression of FN at 7 and 14 days was determined by ELISA in the Shixiang plaster group,and VEGF expression was significantly increased at 7 days,but expression had been expressed at a low level at 14 days.Conclusion:Shixiang plaster exhibits remarkable efficacy in healing chronic wounds.The proposed mechanism involves FN’s promotion of angiogenesis and cell proliferation,VEGF’s impact on angiogenesis and inflammation,and CD31’s regulatory role in inhibiting inflammation while promoting angiogenesis.
基金supported by Joint Funds for the Innovation of Science and Technology,Fujian Province[Grant number:2020Y9039]Fujian Provincial Health Technology Project[Grant number:2022GGA032].
文摘Objective Triple-negative breast cancer(TNBC)poses a significant challenge for treatment efficacy.CD8+T cells,which are pivotal immune cells,can be effectively analyzed for differential gene expression across diverse cell populations owing to rapid advancements in sequencing technology.By leveraging these genes,our objective was to develop a prognostic model that accurately predicts the prognosis of patients with TNBC and their responsiveness to immunotherapy.Methods Sample information and clinical data of TNBC were sourced from The Cancer Genome Atlas and METABRIC databases.In the initial stage,we identified 67 differentially expressed genes associated with immune response in CD8+T cells.Subsequently,we narrowed our focus to three key genes,namely CXCL13,GBP2,and GZMB,which were used to construct a prognostic model.The accuracy of the model was assessed using the validation set data and receiver operating characteristic(ROC)curves.Furthermore,we employed various methods,including Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway,immune infiltration,and correlation analyses with CD274(PD-L1)to explore the model's predictive efficacy in immunotherapeutic responses.Additionally,we investigated the potential underlying biological pathways that contribute to divergent treatment responses.Results We successfully developed a model capable of predicting the prognosis of patients with TNBC.The areas under the curve(AUC)values for the 1-,3-,and 5-year survival predictions were 0.618,0.652,and 0.826,respectively.Employing this risk model,we stratified the samples into high-and low-risk groups.Through KEGG enrichment analysis,we observed that the high-risk group predominantly exhibited enrichment in metabolism-related pathways such as drug and chlorophyll metabolism,whereas the low-risk group demonstrated significant enrichment in cytokine pathways.Furthermore,immune landscape analysis revealed noteworthy variations between(PD-L1)expression and risk scores,indicating that our model effectively predicted the response of patients to immune-based treatments.Conclusion Our study demonstrates the potential of CXCL13,GBP2,and GZMB as prognostic indicators of clinical outcomes and immunotherapy responses in patients with TNBC.These findings provide valuable insights and novel avenues for developing immunotherapeutic approaches targeting TNBC.
基金National Natural Science Foundation of China(No.82370164)Sanming Project of Medicine in Shenzhen(No.SZSM202011004)Shenzhen Science and Technology Innovation Commission(JCYJ20180307150419435 and JCYJ20210324123004011).
文摘Background:Chimeric antigen receptor T(CAR-T)cell therapy has achieved marked therapeutic success in ameliorating hematological malignancies.However,there is an extant void in the clinical guidelines concerning the most effective chemotherapy regimen prior to chimeric antigen receptor T(CAR-T)cell therapy,as well as the optimal timing for CAR-T cell infusion post-chemotherapy.Materials and Methods:We employed cell-derived tumor xenograft(CDX)murine models to delineate the optimal pre-conditioning chemotherapy regimen and timing for CAR-T cell treatment.Furthermore,transcriptome sequencing was implemented to identify the therapeutic targets and elucidate the underlying mechanisms governing the treatment regimen.Results:Our preclinical in vivo evaluation determined that a combination of cyclophosphamide and fludarabine,followed by the infusion of CD19 CAR-T cells five days subsequent to the chemotherapy,exerts the most efficacious therapeutic effect in B-cell hematological malignancies.Concurrently,RNA-seq data indicated that the therapeutic efficacy predominantly perturbs tumor cell metabolism,primarily through the inhibition of key mitochondrial targets,such as C-Jun Kinase enzyme(C-JUN).Conclusion:In summary,the present study offers critical clinical guidance and serves as an authoritative reference for the deployment of CD19 CAR-T cell therapy in the treatment of B-cell hematological malignancies.
基金financially supported by the National Natural Science Foundation of China(Grant No.21902046,21801071,12174092,U21A20500)Overseas Expertise Introduction Center for Discipline Innovation(D18025)+3 种基金the Natural Science Foundation of Hubei Provincial(Grant No.2018CFB171)Wuhan Science and Technology Bureau(2020010601012163)Science and Technology Research Project of Hubei Provincial Department of Education(No.D20221001)the open foundation of the State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences
文摘Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge.Here,density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO_(4)atomic-layer(110)/(110)facet S-scheme heterojunction.Subsequently,a CdS quantum dots/InVO_(4)atomic-layer was synthesized by in-situ loading of CdS quantum dots with(110)facets onto the(110)facets of InVO_(4)atomic-layer.As a result of the deliberately constructed built-in electric field between the adjoining facets,we obtain a remarkably enhanced photocatalytic degradation rate for ethylene.This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO_(4).In-situ irradiated X-ray photoelectron spectroscopy,photoluminescence and time-resolved photoluminescence measurements were carried out.These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers,and results in the formation of S-scheme charge transfer pathways.The reaction mechanism of the photocatalytic C_(2)H_(4)oxidation is investigated by in-situ electron paramagnetic resonance.This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.
文摘Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help better understand local anti-tumor immune responses and estimate the effect of immunotherapy.Methods:Gens related to CD8+T cells were identified by cluster analysis based on the single-cell sequencing data of three LUAD tissues and their paired normal tissues.Weighted gene co-expression network analysis(WGCNA),consensus clustering,differential expression analysis,least absolute shrinkage and selection operator(LASSO)and Cox regression analysis were conducted to classify molecular subtypes for LUAD and to develop a risk model using prognostic genes related to CD8+T cells.Expression of the genes in the prognostic model,their effects on tumor cell invasion,and interactions with CD8+T cells were verified by cell experiments.Results:This study defined two LUAD clusters(CD8+0 and CD8+1)based on CD8+T cells,with cluster CD8+0 being significantly associated with the prognosis of LUAD.Three heterogeneous subtypes(clusters 1,2,and 3)differing in prognosis,genome mutation events,and immune status were categorized using 42 prognostic genes.A prognostic model created based on 11 significant genes(including CD200R1,CLEC17A,ZC3H12D,GNG7,SNX30,CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2,and KRT81)was able to independently estimate the death risk for patients in different LUAD cohorts.Moreover,the model also showed general applicability in external validation cohorts.Low-risk patients could benefit more from taking immunotherapy and were significantly related to the resistance to anticancer drugs.The results from cell experiments demonstrated that the expression of CD200R1,CLEC17A,ZC3H12D,GNG7,and SNX30 was significantly downregulated,while that of CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2 and KRT81 was upregulated in LUAD cells.Inhibition of CD200R1 greatly increased the invasiveness of the LUAD cells,but inhibiting CDCP1 expression weakened the invasion ability of LUAD cells.Conclusion:This study defined two prognostic CD8+T cell clusters and classified three heterogeneous molecular subtypes for LUAD.A prognostic model predictive of the potential effects of immunotherapy on LUAD patients was developed.
基金supported by the National Natural Science Foundation of China(No.81972681,82103677)Tianjin Education Commission Research Plan Project(No.2021KJ201)+1 种基金Shenzhen High-level Hospital Construction Fund(No.G2022139)Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-009A).
文摘Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Methods:Fresh ESCC tissues were collected and grouped according to the infiltration density of CD8+T cells.After the transcriptome sequencing on these samples and the combined analyses with The Cancer Genome Atlas(TCGA)ESCC data,a secreted protein DEFB1 was selected to explore its potential role in the infiltration of CD8+T cells.Bioinformatics analyses,histological verification and in vitro experiments were then performed.Results:DEFB1 was highly expressed in ESCC,and the high expression of DEFB1 was an independent risk factor for overall survival.Since the up-regulation or down-regulation of DEFB1 did not affect the proliferation,migration and apoptosis of ESCC cells,we speculated that the oncogenic effect of DEFB1 was achieved by regulating microenvironmental characteristics.Bioinformatics analyses suggested that DEFB1 might play a major role in the inflammatory response and anti-tumor immune response,and correlate to the infiltration of immature dendritic cell(imDC)in ESCC.Histological analyses further confirmed that there were less CD8+T cells infiltrated,less CD83+mature DC(mDC)infiltrated and more CD1a+imDC infiltrated in those ESCC samples with high expression of DEFB1.After the treatment with recombinant DEFB1 protein,the maturation of DC was hindered significantly,followed by the impairment of the killing effects of T cells in both 2D and 3D culture in vitro.Conclusions:Tumor-derived DEFB1 can inhibit the maturation of DC and weaken the function of CD8+T cells,accounting for the immune tolerance in ESCC.The role of DEFB1 in ESCC deserves further exploration.
文摘Objective:To explore the expression of CD151 in gastric cancer tissues and its clinical significance.Methods:Immunohistochemistry was employed to detect the expression of CD151 in gastric cancer tissues and adjacent normal tissues.The relationship between CD151 expression and the clinicopathological characteristics of gastric cancer was analyzed.Results:The expression of CD151 in gastric cancer tissues was significantly higher than in adjacent normal tissues(P<0.05).It was associated with the degree of differentiation,depth of invasion,lymph node metastasis,and TNM staging of gastric cancer.The survival time of patients with high CD151 expression was significantly shorter than that of those with low expression(P<0.05).Conclusion:High expression of CD151 in gastric cancer tissues is correlated with the malignant biological behavior of gastric cancer and can serve as an indicator for evaluating the prognosis of gastric cancer.
文摘以前,我从未想过听CD会过时,但在无载体媒体时代,情况已经如此。幸运的是,一群执着的音响发烧友还在坚持。ORERA Consonance Re horee a OPERA Consonance Reference CDS8这款CD、数码流播放器,不仅可以播放CD,而且它是以非常高的水准来播放CD,名副其实的好产品,可以与Advance Acoustics、Creek、AVM等这些品牌的产品齐名。
文摘Manganese(Mn)doped cadmium sulphide(Cd S)nanoparticles were synthesized using a chemical method.It was possible to decrease Cd S:Mn particle size by increasing Mn concentration.Investigation techniques such as ultraviolet-visible(UV-Vis)absorption spectroscopy and photoluminescence(PL)spectroscopy were used to determine optical properties of Cd S:Mn nanoparticles.Size quantization effect was observed in UV-Vis absorption spectra.Quantum efficiency for luminescence or the internal magnetic field strength was increased by doping Cd S nanoparticles with Mn element.Orange emission was observed at wavelength~630 nm due to ^(4)T_1→^(6)A_1 transition.Isolated Mn~(2+)ions arranged in tetrahedral coordination are mainly responsible for luminescence.Luminescence quenching and the effect of Mn doping on hyperfine interactions in the case of Cd S nanoparticles were also discussed.The corresponding weight percentage of Mn element actually incorporated in doping process was determined by atomic absorption spectroscopy(AAS).Crystallinity was checked and the average size of nanoparticles was estimated using the X-ray diffraction(XRD)technique.Cd S:Mn nanoparticles show ferromagnetism at room temperature.Transmission electron microscopy(TEM)images show spherical clusters of various sizes and selected area electron diffraction(SAED)patterns show the polycrystalline nature of the clusters.The electronic states of diluted magnetic semiconductors(DMS)ofⅡ-Ⅵgroup Cd S nanoparticles give them great potential for applications due to quantum confinement.In this study,experimental results and discussions on these aspects have been given.
基金supported by grants from the National Natural Science Foundation of China(No.82020108004)the Hospital-level Clinical Innovation Military-Civilian Special Project of Army Medical University(No.2018JSLC0020)+1 种基金Chongqing Science and Technology Innovation Leading Talent(No.CSTCCXLJRC201718)Natural Science Foundation of Chongqing Innovation Group Science Program(No.cstc2021jcyj-cxttX0001).
文摘Objective:This study aimed to compare the efficacy of anti-CD19 chimeric antigen receptor T cells(CAR-T cells)versus chemotherapy plus donor lymphocyte infusion(chemo-DLI)for treating relapsed CD 19-positive B-cell acute lymphoblastic leukemia(B-ALL)after allogeneic hematopoietic stem cell transplantation(allo-HSCT).Methods:Clinical data of 43 patients with B-ALL who relapsed after allo-HSCT were retrospectively analyzed.Twenty-two patients were treated with CAR-T cells(CAR-T group),and 21 with chemotherapy plus DLI(chemo-DLI group).The complete remission(CR)and minimal residual disease(MRD)-negative CR rates,leukemia-free survival(LFS)rate,overall survival(OS)rate,and incidence of acute graft-versus-host disease(aGVHD),cytokine release syndrome(CRS)and immune effector cell-associated neurotoxicity syndrome(ICANS)were compared between the two groups.Results:The CR and MRD-negative CR rates in the CAR-T group(77.3%and 61.5%)were significantly higher than those in the chemo-DLI group(38.1%and 23.8%)(P=0.008 and P=0.003).The 1-and 2-year LFS rates in the CAR-T group were superior to those in the chemo-DLI group:54.5%and 50.0%vs.9.5%and 4.8%(P=0.0001 and P=0.00004).The 1-and 2-year OS rates in the CAR-T versus chemo-DLI group were 59.1%and 54.5%vs.19%and 9.5%(P=0.011 and P=0.003).Six patients(28.6%)with grade 2-4 aGVHD were identified in the chemo-DLI group.Two patients(9.1%)in the CAR-T group developed grade 1-2 aGVHD.Nineteen patients(86.4%)developed CRS in the CAR-T group,comprising grade 1-2 CRS in 13 patients(59.1%)and grade 3 CRS in 6 patients(27.3%).Two patients(9.1%)developed grade 1-2 ICANS.Conclusion:Donor-derived anti-CD19 CAR-T-cell therapy may be better,safer,and more effective than chemo-DLI for B-ALL patients who relapse after allo-HSCT.