期刊文献+
共找到64,926篇文章
< 1 2 250 >
每页显示 20 50 100
Silicon and Nitric Oxide-Mediated Regulation of Growth Attributes, Metabolites and Antioxidant Defense System of Radish (Raphanus sativus L.) under Arsenic Stress
1
作者 Savita Bhardwaj Tunisha Verma +1 位作者 Ali Raza Dhriti Kapoor 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期763-782,共20页
Arsenic(As)contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world.Therefore,the present study was designed... Arsenic(As)contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world.Therefore,the present study was designed to investigate the individual as well as the combined effects of exogenous silicon(Si)and sodium nitroprusside(SNP),a nitric oxide(NO)donor,on plant growth,metabolites,and antioxidant defense systems of radish(Raphanus sativus L.)plants under three different concentrations of As stress,i.e.,0.3,0.5,and 0.7 mM in a pot experiment.The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers,i.e.,malondialdehyde and hydrogen peroxide.However,foliar application of Si(2 mM)and pretreatment with SNP(100μM)alone as well as in combination with Si improved the plant growth parameters,i.e.,root length,fresh and dry weight of plants under As stress.Furthermore,As stress also reduced protein,and metabolites contents(flavonoids,phenolic and anthocyanin).Activities of antioxidative enzymes such as catalase(CAT),ascorbate peroxidase(APX),guaiacol peroxidase(POD),and polyphenol oxidase(PPO),as well as the content of non-enzymatic antioxidants(glutathione and ascorbic acid)decreased under As stress.In most of the parameters in radish,As III concentration showed maximum reduction,as compared to As I and II concentrations.However,the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein,and metabolites content.Enhancement in the activities of CAT,APX,POD and PPO enzymes were recorded.Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress.Results obtained were more pronounced when Si and NO were applied in combination under As stress,as compared to their individual application.In short,the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content,activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants. 展开更多
关键词 antioxidant defense system oxidative stress metal stress metabolism reactive oxygen species crop productivity
下载PDF
Inoculation of Chlorella and Food Waste Improves the Physio-Morphological Features of Red Pepper by Regulating Activating Antioxidant Defense System
2
作者 Sang-Mo Kang Shifa Shaffique +9 位作者 Muhammad Imran Su-Mi Jeon Shabir Hussain Wani Muhammad Aaqil Khan Peter Odongkara Eun-Hae Kwon Yosep Kang Joon-Ik Son Won-Chan Kim In-Jung Lee 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第9期2699-2711,共13页
Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the pla... Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the plant growth-promoting bacterial strain,Chlorella,related to plant metabolic features and sodium chloride content in arable soil is limited.The present study was conducted to investigate the exogenous application of food waste along with Chlorella,which improved the physio-morphological features of red pepper.Our results revealed that this combination enhanced the organic matter in the soil,ultimately improving the fertility rate of the soil,and the physio-morphological features,such as chlorophyll a content(24.5±0.7),root(7.8±0.7)cm and shoot length(12.1±0.7)cm,fresh weight(2.1±0.05)g,dry weight(0.19±0.05)g,mineral contents,and hormonal concentration(ABA by up to 2 folds).The combined treatment also minimized free radicals via the activation of the intrinsic antioxidant series cascade and electrolyte leakage.Our findings showed that adding Chlorella and food wastes improved growth characteristics and can be used as a green bio-fertilizer for sustainable agriculture. 展开更多
关键词 Food waste CHLORELLA HORMONE antioxidant
下载PDF
Response of antioxidant defense system in copepod Calanus sinicus Brodsky exposed to CO_2-acidified seawater
3
作者 ZHANG Dajuan GUO Donghui +1 位作者 WANG Guizhong LI Shaojing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第8期82-88,共7页
Marine zooplankton responds sensitively to elevated seawater CO_2 concentration. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated CO_2conce... Marine zooplankton responds sensitively to elevated seawater CO_2 concentration. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated CO_2concentration(0.08%, 0.20%, 0.50% and 1.00%) on antioxidant defense components, as well as two detoxification enzymes of Calanus sinicus(copepod). The results showed that glutathione peroxidase(GPx) activity exposed to CO_2-acidified seawater was significantly stimulated while other antioxidant components, including glutathione-Stransferase(GST) activity, superoxide dismutase(SOD) activity decreased significantly with reduced glutathione(GSH) level and GSH/oxidized glutathione(GSSG) value. CO_2-acidified seawater exhibited stimulatory effects on adenosine triphosphatase(ATPase) activity and acetylcholinesterase(Ach E) activity was inhibited. Moreover, the results of principal component analysis indicated that 75.93% of the overall variance was explained by the first two principal components. The elevated CO_2 concentration may affect the metabolism and survivals of copepods through impacts these enzymes activities. Further studies are needed to focus on the synergistic effects of elevated CO_2 concentration and other environmental factors on copepods. 展开更多
关键词 acidified seawater carbon dioxide Calanus sinicus antioxidant defense system
下载PDF
Changes in Growth,Photosynthetic Pigments,Cell Viability,Lipid Peroxidation and Antioxidant Defense System in Two Varieties of Chickpea(Cicer arietinum L.)Subjected to Salinity Stress 被引量:1
4
作者 Zeenat Mushtaq Shahla Faizan +4 位作者 Basit Gulzar Humira Mushtaq Sayyada Bushra Alisha Hussain Khalid Rehman Hakeem 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第1期149-168,共20页
Salinity is one of the most severe abiotic stresses for crop production.The present study investigates the salinityinduced modulation in growth indicators,morphology and movement of stomata,photosynthetic pigments,act... Salinity is one of the most severe abiotic stresses for crop production.The present study investigates the salinityinduced modulation in growth indicators,morphology and movement of stomata,photosynthetic pigments,activity of carbonic anhydrase as well as nitrate reductase,and antioxidant systems in two varieties of chickpea(Pusa-BG5023,and Pusa-BGD72).On 20^(th) day of sowing,plants were treated with varying levels of NaCl(0,50,100,150 and 200 mM)followed by sampling on 45 days of sowing.Recorded observations on both the varieties reveal that salt stress leads to a significant decline in growth,dry biomass,leaf area,photosynthetic pigments,protein content,stomatal behavior,cell viability,activity of nitrate reductase and carbonic anhydrase with the rise in the concentration of salt.However,quantitatively these changes were less in Pusa-BG5023 as compared to Pusa-BGD72.Furthermore,salinity-induced oxidative stress enhanced malondialdehyde content,superoxide radicals,foliar proline content,and the enzymatic activities of superoxide dismutase,catalase,and peroxidase.The variety Pusa-BGD72 was found more sensitive than Pusa-BG5023 to salt stress.Out of different graded concentrations(50,100,150 and 200 mM)of sodium chloride,50 mM was least toxic,and 200 mM was most damaging.The differential behavior of these two varieties measured in terms of stomatal behavior,cell viability,photosynthetic pigments,and antioxidant defense system can be used as prospective indicators for selection of chickpea plants for salt tolerance and sensitivity. 展开更多
关键词 Salt stress ion homeostasis antioxidant defense cell viability CHICKPEA
下载PDF
Response of enzymatic and non-enzymatic antioxidant defense systems of Polygonum hydropiper to Mn stress 被引量:1
5
作者 杨贤均 邓冬梅 +1 位作者 刘可慧 于方明 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期793-797,共5页
The response of enzyme and non-enzymatic antioxidants of Mn hyperaccumuator, Polygonum hydropiper(P. hydropiper), to Mn stress was studied using hydroponics culture experiments to explore the mechanism of Mn tolerance... The response of enzyme and non-enzymatic antioxidants of Mn hyperaccumuator, Polygonum hydropiper(P. hydropiper), to Mn stress was studied using hydroponics culture experiments to explore the mechanism of Mn tolerance in this species. Results showed that both chlorophyll and carotenoid contents significantly(p<0.05) decreased with increasing Mn treatment levels(0, 0.5, 1, 2, 4, and 8 mg/L) in hydroponics. The concentrations of malondialdehyde(MDA) and hydrogen peroxide(H_2O_2) in the root and shoot of P. hydropiper were accumulated under Mn stress. Meanwhile, the anti-oxidative functions of several important enzymes, including superoxide dismutase(SOD), catalase(CAT), ascorbate peroxidase(APX) and peroxidase(POD) in plants were stimulated by Mn spike in leaves and roots, especially at low Mn stress; while sulfhydryl group(—SH) and glutathion(GSH) were likely involved in Mn detoxification of P. hydropiper under high Mn stress. 展开更多
关键词 超氧化物歧化酶 抗氧化防御系统 锰毒 胁迫 水蓼 抗坏血酸过氧化物酶 类胡萝卜素含量 过氧化氢酶
下载PDF
Toxic effects of crude-oil-contaminated soil in aquatic environment on Carassius auratus and their hepatic antioxidant defense system 被引量:3
6
作者 WANG Yuanyuan ZHOU Qixing +2 位作者 PENG Shengwei MA Lena Q NIU Xiaowei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第5期612-617,共6页
Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposur... Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposure were investigated. Results showed that the relationship between the mortality of C. auratus and the exposed doses could be divided into 3 phases: fishes exposed to the low dose groups (0.5-5.0 g/L) were dead due to the ingestion of crude-oil-contaminated soils in aquatic environment; at the medium dose groups (5.0-25.0 g/L) fishes were dead due to the penetration of toxic substances; at the high dose groups (25.0-50.0 g/L) fishes were dead due to environmental stress. The highest mortality and death speed were found in the 1.0 g/L dose group, and the death speed was sharply increased in the 50.0 g/L dose group in the late phase of exposure. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and the content of malaondialdehyde (MDA) in the hepatic tissues of C. auratus were induced significantly. The activity of SOD was increased and then decreased. It was significantly inhibited in the 50.0 g/L dose group. The activity of CAT was highly induced, and restored to a level which is little more than the control when the exposed doses exceeded 10.0 g/L. The activity of GST was the most sensitive, it was significantly induced in all dose groups, and the highest elevation was up to 6 times in the 0.5 g/L dose group comparing with the control. The MDA content was significantly elevated in the 50.0 g/L dose group, and the changes of the MDA content were opposite with the changes of GST activity. 展开更多
关键词 水生环境 污染土壤 原油污染 抗氧化防御系统 鲫鱼 毒性效应 肝脏 SOD活性
下载PDF
Salicylic Acid Alleviates Aluminum Toxicity in Tomato Seedlings (Lycopersicum esculentum Mill.) through Activation of Antioxidant Defense System and Proline Biosynthesis 被引量:1
7
作者 Varalakshmi Surapu Anjaneyulu Ediga Balaji Meriga 《Advances in Bioscience and Biotechnology》 2014年第9期777-789,共13页
The aim of this work was to evaluate the alleviating efficacy of salicylic acid (100, 250 and 500 μM) against the toxic effects of aluminum (Al) on two tomato cultivars (GOWRI and SIRI) differing in their sensitivity... The aim of this work was to evaluate the alleviating efficacy of salicylic acid (100, 250 and 500 μM) against the toxic effects of aluminum (Al) on two tomato cultivars (GOWRI and SIRI) differing in their sensitivity to Al stress. Al treatment (500 μM) caused 40% - 80% drop in plant growth, relative water content (RWC) and cell viability and a reduction of 1 - 2.5 fold and 0.5 - 2 fold in glutathione and proline content respectively, when compared to their control plants grown in Al free medium. Al treatment also resulted in 2 - 5 fold raise in malondialdehyde (MDA) levels, 2 - 3 fold higher Al uptake and 55% - 80% more electrolyte leakage and caused severe DNA damage. Al stress enhanced (1 - 2 fold) the activities of superoxide dismutase (SOD) and peroxidase (POD), but decreased catalase (CAT) activity over their respective controls. Exogenously-applied Salicylic acid (SA) significantly (p < 0.05) and dose-dependently alleviated Al-induced toxicity in tomato seedlings as marked by much improved plant growth, retention of higher RWC, cell viability, glutathione and proline content. SA also caused 0.6 - 1.5 fold reduction in Al uptake, 50% - 80% less electrolyte leakage, 40% - 80% drop in lipid peroxidation and considerable protection against DNA damage. Also, supplementation of SA could considerably reverse the Al-induced changes in the activities of SOD, POD and CAT. Together, our findings demonstrate that, SA is an efficient growth regulator with diversified roles that contribute to its potential alleviating effect against Al induced toxicity and SIRI is a relatively Al-resistant cultivar compared to GOWRI. 展开更多
关键词 ALUMINUM antioxidant ENZYMES PROLINE MALONDIALDEHYDE Salicylic Acid
下载PDF
Effect of Dietary Vitamin C on the Antioxidant Defense System of Hibernating Juvenile Three-keeled Pond Turtles (Chinemys reevesii)
8
作者 Qi ZHANG Cuijuan NIU Weijie XU 《Asian Herpetological Research》 SCIE 2012年第2期151-156,共6页
Juvenile three-keeled pond turtles(Chinemys reevesii) were fed diets supplemented with vitamin C(Vc) at doses of 0(basal diet, Vc0), 100(Vc100), 200(Vc200), 500(Vc500) and 2500(Vc2500) mg/kg diets at 28°C for 4 w... Juvenile three-keeled pond turtles(Chinemys reevesii) were fed diets supplemented with vitamin C(Vc) at doses of 0(basal diet, Vc0), 100(Vc100), 200(Vc200), 500(Vc500) and 2500(Vc2500) mg/kg diets at 28°C for 4 weeks, respectively. Then, the water temperature was gradually reduced to 10°C, and the turtles were induced into hibernation. Liver tissue samples were collected at three time points: start of hibernation(T1), 4 and 6 weeks' hibernation(T2 and T3). A control group fed with the basal diet was set to parallel the whole treatment process, but reared at 28°C constantly. The results showed that hibernation mildly affected the antioxidant system and the influence varied with hibernating time. Hepatic malondialdehyde content of the Vc100 group was significantly lower than that of the other groups at T1. At T2, hepatic MDA in the groups of Vc500 and Vc2500 decreased significantly, while no clear differences were found among all groups at T3. The activities of antioxidant enzymes showed a positive correlation with dietary Vc dose before hibernation. After hibernation, total antioxidant capability was not affected by Vc. Superoxide dismutase activity became similar in different groups at T2, but decreased in higher Vc groups(≥ 200 mg/kg) at T3. Glutathione peroxidase and glutathione-S-transferase activities decreased significantly with dietary Vc supplementation(≥ 100 mg/kg) at T2, but recovered at T3. The result indicates that under normal rearing condition, low dietary Vc supplementation(< 100 mg/kg) might be beneficial to the antioxidant defense system. The effect of dietary Vc on the antioxidant defense system differed during hibernation. 展开更多
关键词 Chinemys reevesii HIBERNATION vitamin C antioxidant capability
原文传递
Effect of Salinity Stress on Antioxidant Defense System of Niger (Guizotia abyssinica Cass.)
9
作者 Hemla Naik Kavya Naik Varadahalli R. Devaraj 《American Journal of Plant Sciences》 2016年第6期980-990,共11页
Salinity is one of the principal abiotic stresses that affect plant productivity by inducing osmotic stress, which in turn, causes oxidative stress. Plants respond to this oxidative stress by adjusting levels of antio... Salinity is one of the principal abiotic stresses that affect plant productivity by inducing osmotic stress, which in turn, causes oxidative stress. Plants respond to this oxidative stress by adjusting levels of antioxidants and associated components. 10-day old seedlings of Niger were evaluated for abiotic stress response in terms of antioxidants and antioxidant enzymes over 72 h in presence of up to 500 mM NaCl in combination with CaCl<sub>2</sub>. Stress markers: H<sub>2</sub>O<sub>2</sub>, lipid peroxidation, antioxidants;ASC and GSH and antioxidant enzymes such as POX, APX and GR were significantly elevated, while CAT was reduced. The response was concentration and time-dependent up to 300 mM NaCl and fluctuated beyond. Metabolic enzymes β-amylase and acid phosphatase exhibited moderate increase relative to controls. The parameters indicated tolerance of the plants to salinity up to 300 mM over 48 h. 展开更多
关键词 NIGER Guizotia abyssinica Salinity Stress antioxidantS antioxidant Enzymes Lipid Peroxidation
下载PDF
Salt-Induced Changes in Physio-Biochemical and Antioxidant Defense System in Mustard Genotypes
10
作者 Md.Shakhawat Hossain Md.Daud Hossain +2 位作者 Abdul Hannan Mirza Hasanuzzaman Md.Motiar Rohman 《Phyton-International Journal of Experimental Botany》 SCIE 2020年第3期541-559,共19页
Salinity stress is a major factor limiting plant growth and productivity of many crops including oilseed.The present study investigated the identification of salt tolerant mustard genotypes and better understanding th... Salinity stress is a major factor limiting plant growth and productivity of many crops including oilseed.The present study investigated the identification of salt tolerant mustard genotypes and better understanding the mechanism of salinity tolerance.Salt stresses significantly reduced relative water content(RWC),chlorophyll(Chl)content,K^(+) and K^(+)/Na^(+) ratio,photosynthetic rate(P N),tran-spiration rate(Tr),stomatal conductance(gs),intercellular CO_(2) concentration(Ci)and increased the levels of proline(Pro)and lipid peroxidation(MDA)contents,Na+,superoxide(O_(2)^(•−))and hydrogen peroxide(H_(2)O_(2))in both tolerant and sensitive mustard genotypes.The tolerant genotypes maintained higher Pro and lower MDA content than the salt sensitive genotypes under stress condition.The activities of superoxide dismutase(SOD),catalase(CAT),peroxidase(POD),glutathione peroxidase(GPX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR)were increased with increasing salinity in salt tolerant genotypes,BJ-1603,BARI Sarisha-11 and BARI Sarisha-16,but the activities were unchanged in salt sensitive genotype,BARI Sarisha-14.Besides,the increment of ascorbate peroxidase(APX)activity was higher in salt sensitive genotype as compared to tolerant ones.However,the activ-ities of glutathione reductase(GR)and glutathione S-transferase(GST)were increased sharply at stress conditions in tolerant genotypes as compared to sensi-tive genotype.Higher accumulation of Pro along with improved physiological and biochemical parameters as well as reduced oxidative damage by up-regulation of antioxidant defense system are the mechanisms of salt tolerance in selected mustard genotypes,BJ-1603 and BARI Sarisha-16. 展开更多
关键词 MUSTARD saline sensitivity PHOTOSYNTHESIS antioxidantS ionic imbalance oxidative stress
下载PDF
Antioxidant Defense System in Wheat (Triticum aestivum L.) Seedlings under Heat Stress and Revival Conditions 被引量:2
11
作者 R. Mahla S. Madan +1 位作者 M. K. Rana R. Munjal 《Journal of Agricultural Science and Technology》 2011年第1期27-34,共8页
关键词 小麦叶片 幼苗叶片 抗氧化防御系统 抗坏血酸过氧化物酶 高温胁迫 CAT活性 耐盐品种 谷胱甘肽还原酶
下载PDF
Acute Toxicity of Cadmium on the Antioxidant Defense Systems and Lipid Peroxidation in the Juveniles of Genetically Improved Farmed (GIFT) Tilapia Oreochromis Niloticus
12
作者 Y. Lin Z.S. Tang X.W. Cao X. Gan 《Journal of Environmental Science and Engineering》 2011年第8期1043-1052,共10页
关键词 脂质过氧化反应 抗氧化防御系统 尼罗罗非鱼 急性毒性试验 氧化镉 遗传改良 少年 谷胱甘肽过氧化物酶
下载PDF
Application of Polygonum minus Extract in Enhancing Drought Tolerance in Maize by Regulating Osmotic and Antioxidant System
13
作者 Mingzhao Han Susilawati Kasim +4 位作者 Zhongming Yang Xi Deng Md Kamal Uddin Noor Baity Saidi Effyanti Mohd Shuib 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期213-226,共14页
Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of ... Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of Polygonum minus extract(PME)in enhancing drought tolerance in plants,a study was set up in a glasshouse environment using 10 different treatment combinations.PME foliar application were designed in CRD and effects were closely observed related to the growth,physiology,and antioxidant system changes in maize(Zea mays L.)under well-watered and drought conditions.The seaweed extract(SWE)was used as a comparison.Plants subjected to drought stress exhibited a significant reduction in fresh weight,dry weight,relative water content(RWC),and soluble sugar,but they stimulated the phenolic,flavonoid,proline,glutathione(GSH),malondialdehyde(MDA)and antioxidant enzyme(catalase,CAT;peroxidase,POD;superoxide dismutase,SOD)activities.Foliar application of PME improved fresh and dry weight(FW:33.1%~41.4%;DW:48.0%~43.1%),chlorophyll content(Chl b:87.9%~100.76%),soluble sugar(23.6%~49.3%),and soluble protein(48.6%~56.9%)as well as antioxidant enzyme activities(CAT and POD)compared to CK under drought conditions.while decreasing the level of MDA.Notably,the mitigating effect of PME application with high concentration was more effective than those of SWE.Our study reveals that PME could alleviate drought stress by regulating osmoprotectant content and antioxidant defense system and can be used as an economical and environmentally friendly biostimulants for promoting maize growth under drought stress. 展开更多
关键词 Drought biostimulants photosynthesis OSMOPROTECTANTS antioxidantS MAIZE
下载PDF
Ellagic Acid Enhances Antioxidant System Activity and Maintains the Quality of Strawberry Fruit during Storage
14
作者 Jian Chen Jing Zhang +2 位作者 Gang Pan Dandan Huang Shuhua Zhu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期15-28,共14页
Ellagic acid(EA)is a natural antioxidant,widely present in a lot of forms’soft fruits,nuts,and other plant tissues,and helpful for promoting human health;however,its protective effect on postharvest fruit and improvi... Ellagic acid(EA)is a natural antioxidant,widely present in a lot of forms’soft fruits,nuts,and other plant tissues,and helpful for promoting human health;however,its protective effect on postharvest fruit and improving the quality index of postharvest fruit have rarely been studied.In this experiment,the strawberries were soaked in 0,100,200,300,400,and 500 mg L^(−1) EA,respectively,and the influential EA on fruit quality and the antioxidant system of strawberries were studied.Compared with the control,EA treatment can reduce the browning degree and rotting rate of strawberry fruit during storage and augment the soluble solid content(SSC).EA treatment can also increase the content of related stuff and enzyme activity in antioxidant systems;the gene expression level of polyphenol oxidase(PPO)in strawberries treated with EA was always down-regulated,correspondingly,the expression of other antioxidant enzyme genes was enhanced.Among the strawberry fruits treated with EA of different concentrations,300 mg L^(−1) EA had the best effect in the process of strawberry preservation.The results suggested that the proper concentration of exogenous EA at 300 mg L−1 could maintain strawberries’quality and enhance the antioxidant system by improving the activities of antioxidative enzymes and the ascorbateglutathione(AsA-GSH)cycle during storage. 展开更多
关键词 STRAWBERRY ellagic acid antioxidative enzyme AsA-GSH cycle STORAGE
下载PDF
Alu antisense RNA ameliorates methylglyoxal-induced human lens epithelial cell apoptosis by enhancing antioxidant defense 被引量:1
15
作者 Pei-Yuan Wu Ning Ji +8 位作者 Chong-Guang Wu Xiao-Die Wang Xin Liu Zhi-Xue Song Murad Khan Suleman Shah Ying-Hua Du Xiu-Fang Wang Li-Fang Yan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第2期178-190,共13页
AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CC... AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CCK-8)and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assays were used to assess HLEC viability.HLEC viability/death was detected using a Calcein-AM/PI double staining kit;the annexin V-FITC method was used to detect HLEC apoptosis.The cytosolic reactive oxygen species(ROS)levels in HLECs were determined using a reactive species assay kit.The levels of malondialdehyde(MDA)and the antioxidant activities of total-superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px)were assessed in HLECs using their respective kits.RT-q PCR and Western blotting were used to measure m RNA and protein expression levels of the genes.RESULTS:Aluas RNA rescued methylglyoxal-induced apoptosis in HLECs and ameliorated both the methylglyoxalinduced decrease in Bcl-2 m RNA and the methylglyoxalinduced increase in Bax m RNA.In addition,Aluas RNA inhibited the methylglyoxal-induced increase in Alu sense RNA expression.Aluas RNA inhibited the production of ROS induced by methylglyoxal,restored T-SOD and GSHPx activity,and moderated the increase in MDA content after treatment with methylglyoxal.Aluas RNA significantly restored the methylglyoxal-induced down-regulation of Nrf2 gene and antioxidant defense genes,including glutathione peroxidase,heme oxygenase 1,γ-glutamylcysteine synthetase and quinone oxidoreductase 1.Aluas RNA ameliorated methylglyoxal-induced increases of the m RNA and protein expression of Keap1 that is the negative regulator of Nrf2.CONCLUSION:Aluas RNA reduces apoptosis induced by methylglyoxal by enhancing antioxidant defense. 展开更多
关键词 human Alu antisense RNA human lens epithelial cells methylglyoxal toxicity antioxidant defense apoptosis
原文传递
Implication of Oxidative Stress and Antioxidant Defence Systems in Symptomatic and Asymptomatic Plasmodium falciparum Malaria Infection among Children Aged 1 to 15 Years in the Mount Cameroon Area
16
作者 Tambong Ako Ojongnkpot David Denis Sofeu-Feugaing +2 位作者 Vanessa Tita Jugha Germain Sotoing Taiwe Helen Kuokuo Kimbi 《Journal of Biosciences and Medicines》 CAS 2023年第2期124-145,共22页
It is known that the pathogenicity of Plasmodium induces the breakdown of haemoglobin, which leads to the induction of oxidative stress. This study aimed to identify the possible effects of oxidative stress and antiox... It is known that the pathogenicity of Plasmodium induces the breakdown of haemoglobin, which leads to the induction of oxidative stress. This study aimed to identify the possible effects of oxidative stress and antioxidant defence systems in symptomatic and asymptomatic Plasmodium falciparum malaria infection in children (1 - 15 years old) in the Mount Cameroon vicinity. This cross-sectional study involved blood samples collected from 473 children and examined for malaria parasitaemia. Full blood counts were performed using an automated haemoanalyser. Serum oxidative stress status (malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and vitamin C (Vit C)) were each determined by colorimetric enzymatic assays. The prevalence of malaria parasite infection was 32.1% among the participants. Out of that, 62.5% of patients with parasitaemia were symptomatic. Anaemia prevalence increased significantly with parasite density. MDA levels were significantly higher in patients with malaria symptoms than in those without symptoms. A significant and positive correlation was detected between MDA (r = 0.831, P < 0.05), NO (r = 0.779, P < 0.05), and malaria parasite density while, a significant and negative relationship occurred between parasite density and GSH (r = ?0.763, P < 0.05) and Vit C (r = ?0.826, P < 0.05) levels, SOD (r = ?0.621, P < 0.05) and CAT (r = ?0.817, P < 0.05) activities. The SOD activity and GSH level significantly decreased (P < 0.05) with an increase in the MDA levels. These findings showed that MDA and nitric oxide levels increased both in malaria participants with or without symptoms. A similar decrease in the antioxidant defence system was observed in both symptomatic and asymptomatic patients. Therefore, there is a need to develop public health policies that encourage routine diagnosis and treatment of malaria in seemingly healthy people (asymptomatic cases), and this will play an essential role in controlling malaria in tropical countries. 展开更多
关键词 MALARIA ASYMPTOMATIC SYMPTOMATIC Oxidative Stress antioxidant Defence system
下载PDF
Hydrogen Sulfide Improves Rice Seed Germination by Regulating Aluminum Absorption,Internal Antioxidant Enzyme System and Osmotic Balance under Aluminum Toxicity Conditions
17
作者 WEI Qianqian KONG Yali +7 位作者 XIANG Xingjia ZHU Lianfeng LIU Jia TIAN Wenhao JIN Qianyu YU Yijun ZHANG Junhua ZHU Chunquan 《Rice science》 SCIE CSCD 2023年第4期271-275,I0005-I0009,共10页
Uncovering the mechanism of hydrogen sulfide(H2S)in improving rice seed germination under aluminum(Al)toxicity conditions is important for rice production in acidic soil.In the present study,an Al sensitive rice varie... Uncovering the mechanism of hydrogen sulfide(H2S)in improving rice seed germination under aluminum(Al)toxicity conditions is important for rice production in acidic soil.In the present study,an Al sensitive rice variety Kasalath was used.Pretreatment with 0.1 mmol/L sodium hydrosulfide(NaHS,H2S donor)under 70 mmol/L AlCl3(indicated as Al+NaHS treatment)increased rice seed germination by 27.95%,germination potential by 474.16%,and the germination index by 43.44%,compared with Al treatment.The treatment of Al+NaHS reduced the Al content in rice seeds by 16.31%and 32.11%and increased the internal H2S content by 3.82%and 8.90%at 3 and 5 d of treatment,respectively,compared with Al treatment.Al+NaHS treatment significantly increased the activities of superoxide dismutase(SOD)。 展开更多
关键词 antioxidant treatment INTERNAL
下载PDF
Transcriptomes of Litopenaeus vannamei reveal modulation of antioxidant system induced by dietary archaeal carotenoids
18
作者 Wei XIE Guoru DU +5 位作者 Honggang DENG Yingchao MA Meirong GAO Hu DUAN Sung YIK YEONG Liying SUI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第5期2010-2019,共10页
Oxidative stress induced by factors such as ammonia nitrogen has become a major issue in shrimp farming.The effects of carotenoids on the growth and antioxidant capability of Litopenaeus vannamei juveniles were invest... Oxidative stress induced by factors such as ammonia nitrogen has become a major issue in shrimp farming.The effects of carotenoids on the growth and antioxidant capability of Litopenaeus vannamei juveniles were investigated in this study using dietary archaeal carotenoids supplementation.For four weeks,shrimp were given diets containing 0 mg/kg(Ctrl)and 55.98 mg/kg(Car)archaeal carotenoids.Dietary archaeal carotenoids significantly enhanced the astaxanthin content in shrimp muscles and carapaces,as well as the superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px)activity(P<0.05).The malonaldehyde(MDA)content in Car group significantly decreased(P<0.05).The transcriptome analysis was conducted to determine the molecular processes in response to archaeal carotenoids supplementation.A total of 1536 differentially expressed genes(DEGs)were detected,including 538 upregulated DEGs and 998 downregulated DEGs.GO functional enrichment analysis between Ctrl and Car indicated that 26 GO terms including extracellular region,metabolic process,and proteolysis were enriched.The KEGG pathway enrichment analysis revealed that the amino sugar and nucleotide sugar metabolism,cysteine and methionine metabolism,glycine serine and threonine metabolism,and amino acid biosynthesis were enriched.Archaeal carotenoids influenced the expression of several important genes involved in reactive oxygen species(ROS)generation,Nrf2 signaling,and antioxidant enzymes.Seven DEGs were chosen to confirm the RNA-Seq data using qRT-PCR.The genes and pathways discovered in this work assist to elucidate the molecular processes through which archaeal carotenoid enhances L.vannamei antioxidative system. 展开更多
关键词 archaeal carotenoid Litopenaeus vannamei transcriptome antioxidative mechanism
下载PDF
Attacks Against Cross-Chain Systems and Defense Approaches:A Contemporary Survey
19
作者 Li Duan Yangyang Sun +3 位作者 Wei Ni Weiping Ding Jiqiang Liu Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1647-1667,共21页
The blockchain cross-chain is a significant technology for inter-chain interconnection and value transfer among different blockchain networks.Cross-chain overcomes the“information island”problem of the closed blockc... The blockchain cross-chain is a significant technology for inter-chain interconnection and value transfer among different blockchain networks.Cross-chain overcomes the“information island”problem of the closed blockchain network and is increasingly applied to multiple critical areas such as finance and the internet of things(IoT).Blockchain can be divided into three main categories of blockchain networks:public blockchains,private blockchains,and consortium blockchains.However,there are differences in block structures,consensus mechanisms,and complex working mechanisms among heterogeneous blockchains.The fragility of the cross-chain system itself makes the cross-chain system face some potential security and privacy threats.This paper discusses security defects on the cross-chain implementation mechanism,and discusses the impact of the structural features of blockchain networks on cross-chain security.In terms of cross-chain intercommunication,a cross-chain attack can be divided into a multi-chain combination attack,native chain attack,and inter-chain attack diffusion.Then various security threats and attack paths faced by the cross-chain system are analyzed.At last,the corresponding security defense methods of cross-chain security threats and future research directions for cross-chain applications are put forward. 展开更多
关键词 Blockchain cross-chain defense distributed private key control hash-locking NOTARY security threats sidechain/relay
下载PDF
Effect of powdery mildew on interleaf microbial communities and leaf antioxidant enzyme systems
20
作者 Xinbo Ma Zhanbin Wang +1 位作者 Run Liu Yibing Jiang 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1535-1547,共13页
Chinese peony(Paeonia lactiflora Pall.)is both medicinally and aesthetically beneficial.Powdery mildew is a common fungal disease that seriously jeopardizes the value of numerous species,including peonies as a crop.In... Chinese peony(Paeonia lactiflora Pall.)is both medicinally and aesthetically beneficial.Powdery mildew is a common fungal disease that seriously jeopardizes the value of numerous species,including peonies as a crop.In order to provide a basis for the prevention and treatment of peony powdery mildew,we examined the microbial diversity,the malondialdehyde(MDA)concentrations and antioxidant enzyme activities of peony leaves infected with three levels of powdery mildew to determine any modifications to the leaf's antioxidant enzyme systems and microbial community structure following the onset of disease.The results show that the MDA content rose as the degree of infection became worse.Antioxidant enzyme activity rose and then declined.Following the initiation of powdery mildew,fungal community diversity decreased,whereas there was not any appreciable change in bacterial communities according to microbial diversity sequencing.The relative abundance of more than half of fungal species decreased,with the bacterial genera displaying both abundant and diminished communities with less pronounced alterations in their community structure after the disease spread.Significant different taxa that were critical to the organization of each microbiome were found.Correlation analysis showed that the relative abundance of powdery mildew pathogenic fungal genus Erysiphe was correlated with those of 11 fungal genera and one bacterial genus.Among them,Aureobasidium,Neosetophoma and Sclerostagonospora showed significant positive correlations with Erysiphe and MDA. 展开更多
关键词 Powdery mildew Disease level Interleaf microbial diversity antioxidant enzyme
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部