An obvious antiplasticizing effect has been observed in PVC with small amount of MOCA, 3,3’-dichloro-4,4’-diamino-diphenylmethane. PVC-MOCA interaction and crystallization behavior of PVC/MOCA blends were investigat...An obvious antiplasticizing effect has been observed in PVC with small amount of MOCA, 3,3’-dichloro-4,4’-diamino-diphenylmethane. PVC-MOCA interaction and crystallization behavior of PVC/MOCA blends were investigated in detail to explain the mechanism of antiplasticization on the basis of a series of techniques including DMA, FTIR, and DSC. The results of mechanical properties tests show that the tensile strength of PVC with 5 phr of MOCA reaches a maximum value, 69.5 Mpa, which is about 23 % higher than that of pure PVC. The rise in tensile strength was attributed to an antiplasticizing effect of MOCA on PVC as confirmed by DMA measurements. The evidences from FTIR reveal that a strong hydrogen-bonding interaction takes place between the nitrogen atom of –NH2 groups in MOCA and the methine proton of PVC repeat units. The results of DSC analysis indicate that crystallization behavior of MOCA is suppressed completely and the crystallinity of PVC decreases with the increase of MOCA amount.展开更多
The dynamic mechanical properties and miscibility of an organic hybrid made from chlorinated polyethylene (CPE) and 2, 2'-methyIene-bis-( 4-methyl-6-cyclohexylphenol) ( ZKF ) are mainly discussed in this paper. It...The dynamic mechanical properties and miscibility of an organic hybrid made from chlorinated polyethylene (CPE) and 2, 2'-methyIene-bis-( 4-methyl-6-cyclohexylphenol) ( ZKF ) are mainly discussed in this paper. It is found that ZKF acts as an antiplasticizer in CPE matrix and has good miscibility even with large ratio in CPE /ZKF hybrids. The glass transition temperature of various CPE /ZKF hybrids determined by DSC give a good fit to Wood's equation. Bifunctional ZKF is supposed to improve the intermolecular force of CPE, and the improvement is developed when the ZKF content increases. On the other hand, the viscoelastic properties are highly improved with the addition of ZKF. TA and tanδ peak values increase when the ZKF content increase in the CPE /ZKF hybrids, the damping capacity has been improved during the glass transition of CPE /ZKF hybrids. In addition, the glass transition temperature shifts to room temperature from the low temperature with the continuous addition of ZKF to CPE.展开更多
基金Funded by National Natural Science Foundation of China(No.50673080)
文摘An obvious antiplasticizing effect has been observed in PVC with small amount of MOCA, 3,3’-dichloro-4,4’-diamino-diphenylmethane. PVC-MOCA interaction and crystallization behavior of PVC/MOCA blends were investigated in detail to explain the mechanism of antiplasticization on the basis of a series of techniques including DMA, FTIR, and DSC. The results of mechanical properties tests show that the tensile strength of PVC with 5 phr of MOCA reaches a maximum value, 69.5 Mpa, which is about 23 % higher than that of pure PVC. The rise in tensile strength was attributed to an antiplasticizing effect of MOCA on PVC as confirmed by DMA measurements. The evidences from FTIR reveal that a strong hydrogen-bonding interaction takes place between the nitrogen atom of –NH2 groups in MOCA and the methine proton of PVC repeat units. The results of DSC analysis indicate that crystallization behavior of MOCA is suppressed completely and the crystallinity of PVC decreases with the increase of MOCA amount.
文摘The dynamic mechanical properties and miscibility of an organic hybrid made from chlorinated polyethylene (CPE) and 2, 2'-methyIene-bis-( 4-methyl-6-cyclohexylphenol) ( ZKF ) are mainly discussed in this paper. It is found that ZKF acts as an antiplasticizer in CPE matrix and has good miscibility even with large ratio in CPE /ZKF hybrids. The glass transition temperature of various CPE /ZKF hybrids determined by DSC give a good fit to Wood's equation. Bifunctional ZKF is supposed to improve the intermolecular force of CPE, and the improvement is developed when the ZKF content increases. On the other hand, the viscoelastic properties are highly improved with the addition of ZKF. TA and tanδ peak values increase when the ZKF content increase in the CPE /ZKF hybrids, the damping capacity has been improved during the glass transition of CPE /ZKF hybrids. In addition, the glass transition temperature shifts to room temperature from the low temperature with the continuous addition of ZKF to CPE.