As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply vol...As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified.展开更多
Regarding the performance of traditional endpoint detection algorithms degrades as the environment noise level increases, a recursive calculating algorithm for higher-order cu- mulants over a sliding window is propose...Regarding the performance of traditional endpoint detection algorithms degrades as the environment noise level increases, a recursive calculating algorithm for higher-order cu- mulants over a sliding window is proposed. Then it is applied to the speech endpoint detection. Furthermore, endpoint detection is carried out with the feature of energy. Experimental results show that both the computational efficiency and the robustness against noise of the proposed algorithm are improved remarkably compared with traditional algorithm. The average prob- ability of correct point detection (Pc-point) of the proposed voice activity detection (VAD) is 6.07% higher than that of G.729b VAD in different noisy at different signal-noise ratios (SNRs) environments.展开更多
It is seriously interfered by ship noise when analyzing and extracting broadband spark sound source signal. In the energy concentrated domain which is below 5 kHz, the traditional scale correlation filtering algorithm...It is seriously interfered by ship noise when analyzing and extracting broadband spark sound source signal. In the energy concentrated domain which is below 5 kHz, the traditional scale correlation filtering algorithm, which is based on adjacent-scale correlation, has limited anti-interference ability due to the low signal-to-noise ratio (SNR) and similar Lipschitz exponent characteristic of each other. However, because different frequency bands of the broadband electric spark signal have different noise interferences, the filtering algorithm based on adjacent-scale correlation is adapted to high SNR and small-scale high-frequency wavelet coefficients filtering; the filtering algorithm based on cross-scale correlation is adapted to low SNR and large-scale low-frequency wavelet coefficients filtering, and the threshold coefficient selection method had been corrected in the algorithm. It is shown that the filtering algorithm has a good filtering effect and extracts the broadband spark sound source signal effectively; it is applicable to broadband underwater acoustic signM processing in the presence of narrow-band strong interference background noise.展开更多
基金Project(2018YFE0120100)supported by the National Key R&D Program of ChinaProject(YBPY2040)supported by the Scientific Research Foundation of Graduate School of Southeast University,China。
文摘As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified.
基金supported by the National Natural Science Eoundation of China(61271352)
文摘Regarding the performance of traditional endpoint detection algorithms degrades as the environment noise level increases, a recursive calculating algorithm for higher-order cu- mulants over a sliding window is proposed. Then it is applied to the speech endpoint detection. Furthermore, endpoint detection is carried out with the feature of energy. Experimental results show that both the computational efficiency and the robustness against noise of the proposed algorithm are improved remarkably compared with traditional algorithm. The average prob- ability of correct point detection (Pc-point) of the proposed voice activity detection (VAD) is 6.07% higher than that of G.729b VAD in different noisy at different signal-noise ratios (SNRs) environments.
基金supported by the Scientific Research Foundation of Third Institute of Oceanography,SOA(NO.2010018)the Public Science and Technology Research Funds Projects of Ocean(NO.201005004,NO.201305038)
文摘It is seriously interfered by ship noise when analyzing and extracting broadband spark sound source signal. In the energy concentrated domain which is below 5 kHz, the traditional scale correlation filtering algorithm, which is based on adjacent-scale correlation, has limited anti-interference ability due to the low signal-to-noise ratio (SNR) and similar Lipschitz exponent characteristic of each other. However, because different frequency bands of the broadband electric spark signal have different noise interferences, the filtering algorithm based on adjacent-scale correlation is adapted to high SNR and small-scale high-frequency wavelet coefficients filtering; the filtering algorithm based on cross-scale correlation is adapted to low SNR and large-scale low-frequency wavelet coefficients filtering, and the threshold coefficient selection method had been corrected in the algorithm. It is shown that the filtering algorithm has a good filtering effect and extracts the broadband spark sound source signal effectively; it is applicable to broadband underwater acoustic signM processing in the presence of narrow-band strong interference background noise.