期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Improved method for determining active earth pressure considering arching effect and actual slip surface 被引量:3
1
作者 HE Zhong-ming LIU Zheng-fu +1 位作者 LIU Xiao-hong BIAN Han-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2032-2042,共11页
To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement a... To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods. 展开更多
关键词 particle image velocimetry retaining wall soil arching effect active earth pressure
下载PDF
Evaluation of soil arching effect due to partially mobilized shear stress in piled and geosynthetic-reinforced embankment
2
作者 LV Wei-hua WU Tao +1 位作者 GU Fan GAO Lei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2094-2112,共19页
In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pil... In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pile and subsoil. When the mobilized shear stress is less than the shear strength, partially developed arching will occur. Consequently, existing analytical methods, adopting the ultimate shear strength failure criterion, need to be improved. This study developed a simplified 2 D analytical method, which is based on the developing arching effect, to evaluate the load redistribution of the PGR embankment. Then, the influences of embankment height and internal friction angle, subsoil depth, ratio of pile cap width to pile clear spacing(RPC) and geosynthetic tensile stiffness on the critical height ratio, stress concentration ratio, soil arching ratio, geosynthetic tension and axial strain were investigated. This study suggests that a RPC of 1:1.0 and a one-way of single-layer geosynthetic tensile stiffness of 2000 kN/m should be considered as the sensitivity thresholds for the PGR embankment. 展开更多
关键词 PILE GEOSYNTHETIC arching effect mobilized shear stress parametric analysis
下载PDF
Analysis of Soil arching effect for Blind sheet-pile wharf based on ABAQUS
3
作者 LIU YaWei WANG LiJuan 《International English Education Research》 2016年第4期51-54,共4页
Combined with practical engineering, based on the introduction of soil arching theory, we explore the impact of barrier piles in blind sheet-pile bank connecting structure. Besides, we build a plane strain model by AB... Combined with practical engineering, based on the introduction of soil arching theory, we explore the impact of barrier piles in blind sheet-pile bank connecting structure. Besides, we build a plane strain model by ABAQUS sot'cware to study the impact of cross section type, the pile spacing and soil properties on soil arching effect. We find that cross section type of the pile has a certain influence on soil stress distribution in front of the barrier piles by comparing circular cross section and rectangular cross section. We also find that clear distance between the barrier piles and cohesive force of the soil have a great influence on that impact. We can increase clear distance between the barrier piles appropriately to improve the efficiency of construction and reduce the proiect cost. 展开更多
关键词 Blind sheet-pile wharf barrier piles earth pressure soil arching effect
下载PDF
Numerical and theoretical analysis on soil arching effect of prefabricated piles as deep foundation pit supports 被引量:1
4
作者 Qianwei Xu Jinli Xie +3 位作者 Linhai Lu Yongji Wang Chaojun Wu Qiang Meng 《Underground Space》 SCIE EI CSCD 2024年第3期314-330,共17页
This study presents a detailed investigation into the soil arching effects within deep foundation pits(DFPs),focusing on their mechanical behavior and implications for structural design.Through rigorous 3D finite elem... This study presents a detailed investigation into the soil arching effects within deep foundation pits(DFPs),focusing on their mechanical behavior and implications for structural design.Through rigorous 3D finite element modeling and parameter sensitivity analyses,the research explores the formation,geometric characteristics,and spatial distribution of soil arching phenomena.The investigation encompasses the influence of key parameters such as elastic modulus,cohesion,and internal friction angle on the soil arching effect.The findings reveal that soil arching within DFPs exhibits distinct spatial characteristics,with the prominent arch axis shifting as excavation depth progresses.Optimal soil arching is observed when the pile spacing approximates three times the pile diameter,enhancing soil retention and minimizing deformation risks.Sensitivity analyses highlight the significant impact of soil parameters on soil arching behavior,underscoring the critical role of cohesive forces and internal friction angles in shaping arching characteristics.By elucidating the interplay between soil parameters and soil arching effects,the research provides insights for optimizing pile spacing and structural stability. 展开更多
关键词 Soil arching effect Numerical analysis Foundation pit support Pile spacing
下载PDF
Influence of cutterhead opening ratio on soil arching effect and face stability during tunnelling through non-uniform soils
5
作者 Xue-Jian Chen Pei-Pei Fang +3 位作者 Qiu-Nan Chen Jun Hu Kai Yao Yong Liu 《Underground Space》 SCIE EI CSCD 2024年第4期45-59,共15页
Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures... Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures.Tunnel face instability often occurs with the soil arching collapse.This study investigates the combined effect of cutterhead opening ratio and soil non-uniformity on soil arching effect and face stability,via conducting random finite-element analysis coupled with Monte–Carlo simulations.The results underscore that the face stability is strongly associated with the evolution of stress arch.The obtained stability factors in the uniform soils can serve as a reference for the design of support pressure in practical tunnelling engineering.In addition,non-uniform soils exhibit a lower stability factor than uniform soils,which implies that the latter likely yields an underestimated probability of face failure.The tunnel face is found to have a probability of failure more than 50%if the spatial non-uniformity of soil is ignored.In the end,a practical framework is established to determine factor of safety(FOS)corresponding to different levels of probability of face failure considering various opening ratios in non-uniform soils.The required FOS is 1.70 to limit the probability of face instability no more than 0.1%.Our findings can facilitate the prediction of probability of instability in the conventionally deterministic design of face pressure. 展开更多
关键词 TUNNEL Face stability Soil arching effect Cutterhead opening ratio Non-uniform soil Random field
下载PDF
Analytical model of vertical load acting on jacked pipe considering soil arching effect in cohesionless soil
6
作者 Yu Zhang Lianjin Tao +5 位作者 Xu Zhao Jun Liu Weizhang Liao Fei Guo Xiaohui Yang Ruiqin Zhong 《Underground Space》 SCIE EI CSCD 2024年第1期263-284,共22页
For the project of pipe jacking in cohesionless soil,it is key to determine the vertical load on jacked pipe so as to predict the jacking force accurately.In this paper,a new parabolic soil arching model was proposed ... For the project of pipe jacking in cohesionless soil,it is key to determine the vertical load on jacked pipe so as to predict the jacking force accurately.In this paper,a new parabolic soil arching model was proposed to calculate the vertical load on jacked pipe.This proposed analytical model was composed of parabolic soil arching zone,parabola-typed collapse zone and friction arch zone.Combined with existing literature,the key parameters(i.e.,height of parabolic soil arching,horizontal pressure coefficient and width and height of friction arch)were determined.In addition,considering that the trajectory of major stress is parabola,the formula of horizontal pressure coefficient was deduced in the friction arch.The parabolic soil arching zone is assumed as a three-hinged arch with reasonable arch axis,and the formula of load transfer was derived considering the transition effect of parabolic soil arching.The results of experiment,theoretical models and numerical model were adopted to verify the proposed analytical model.Finally,the influence of the key parameters on the vertical load on jacked pipe were also discussed in detail.This work provides a meaningful reference for evaluating the vertical load on jacked pipe for design of pipe jacking. 展开更多
关键词 Jacked pipe Soil arching effect Theoretical model Parabolic soil arching model Vertical load
下载PDF
Effect of seepage on soil arching effect in deep shield tunnel
7
作者 Xu Song Fan-Yan Meng +2 位作者 Ren-Peng Chen Han-Lin Wang Huai-Na Wu 《Underground Space》 SCIE EI CSCD 2023年第5期218-233,共16页
Shield tunneling and post-tunneling steady seepage are accompanied by stress and displacement variations,which could induce and influence the soil arching effect.Although there are many studies on the tunneling-induce... Shield tunneling and post-tunneling steady seepage are accompanied by stress and displacement variations,which could induce and influence the soil arching effect.Although there are many studies on the tunneling-induced soil arching effect,the research about the effect of seepage on soil arching effect is extremely lacking.In this study,a numerical model is firstly established and verified by field data.Then,a series of numerical models,whose simulation method of steady seepage is verified by adopting the conformal mapping technique,are established to study the soil arching evolution of deep-buried tunneling and post-construction steady seepage.The results indicate that seepage leads to an increase in effective vertical stress,which is consistent with the existing theory.The seepage weakens the soil arching effect resulting in the height of the arch zone reducing from 2.38D(D is the tunnel diameter)to 1.25D.The seepage leads to the further development of ground consolidation settlement,but the differential displacement in the soil mass decreases.The ground reaction curve in the steady seepage condition shows a bigger value than that after excavation.It is reasonable to control the ground loss ratio in the range of 0.5–1.0%,which can minimize overburden pressure with moderate ground deformation. 展开更多
关键词 Soil arching effect Steady seepage Numerical simulation Deep shield tunnel Stress change
下载PDF
Numerical investigation on arching effect surrounding deep cylindrical shaft during excavation process 被引量:3
8
作者 Tanawat Tangjarusritaratorn Yuusuke Miyazaki +2 位作者 Yasuo Sawamura Kiyoshi Kishida Makoto Kimura 《Underground Space》 SCIE EI 2022年第5期944-965,共22页
Predicting the inner displacements of deep vertical shafts during the excavation process has been a difficult task considering the geological,structural,and constructional influences.In fact,the two-dimensional(2D)ana... Predicting the inner displacements of deep vertical shafts during the excavation process has been a difficult task considering the geological,structural,and constructional influences.In fact,the two-dimensional(2D)analytical solution based on the retaining wall model remains insufficient for understanding the actual behavior during an excavation.This is because the deformation of vertical shafts becomes complicated due to the unexpected arching effect brought about by the three-dimensional(3D)flexible displacements occurring in the excavation process.Previous analytical solutions only considered the limit equilibrium.Therefore,the present study deals with a 3D soil-structure simulation by considering the displacements of a cylindrical shaft and the mechanical behavior of the surrounding soil as well as the geometry of the cylindrical structure.Moreover,this mechanical behaviors of the surrounding soil and shaft are controlled by the shaft stiffness;hence,the relationships among the shaft stiffness,mechanical behavior of the surrounding soil(in terms of earth pressure coefficient),and shaft displacement were investigated.A cylindrical model,120 m in depth and 20 m in diameter,was positioned at the center of a sand domain,and each excavation step was performed at an interval depth of 20 m.A 3D finite difference method analysis was applied using the modified Cam-Clay(MCC)model to represent the soil behavior.As a result,the present study provides a new normalized lateral earth pressure theory for excavated shafts by considering the 3D arching effect obtained from parametric studies using various levels of shaft stiffness.From a comparison with the analytical solutions of previous studies(Terzaghi,1943a;Prater,1977;Cheng&Hu,2005),it is found that the previous studies underestimated the earth pressure acting on the cylindrical shaft because they did not consider the accurate arching effect. 展开更多
关键词 Deep cylindrical shaft Excavation analysis Soil mixing wall method arching effect Finite different method Three-dimensional analysis
下载PDF
Numerical analysis of pile–slope stability and the soil arching around two adjacent piles
9
作者 Chien-Yuan CHEN Chun-Kai CHANG Yu-Shan LIN 《Journal of Mountain Science》 SCIE CSCD 2022年第11期3270-3285,共16页
Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in t... Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in the static and seismic stability of the pile–slope caused by the interaction between stabilizing piles. Pile–slope stability analysis was performed to determine the optimal design of piles along a slope and the corresponding failure mode involving the formation of soil arching around two adjacent piles. The Factor of Safety(FS) of the slope was evaluated using the shear strength reduction method for static and seismic analyses. The results of the analysis show that suitable pile spacing(S) and a suitable pile diameter(D) in the middle of a slope result in the maximum FS for the pile–slope system and the formation of soil arching around two adjacent piles. FS of the pile–slope increased negligibly in the seismic analysis of piles located at the slope crest and toe. An optimized pile diameter and installation location afforded the maximum FS for the slope that corresponded to a specified slope failure mode for different pile locations. A pile spacing S ≤ 2.5D for piles installed in the middle of the slope is suggested for increasing the static and seismic pile–slope stability. 展开更多
关键词 Numerical modeling Slope stability Stabilizing pile arching effect Seismic analysis Failure mode
原文传递
Arch structure effect of the coal gangue flow of the fully mechanized caving in special thick coal seam and its impact on the loss of top coal 被引量:9
10
作者 Zhang Ningbo Liu Changyou 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期593-599,共7页
Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragmen... Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam. 展开更多
关键词 Extra thick coal seam Coalgangue flow Top coalloss Dynamic random arch effect
下载PDF
Earth Pressure of the Trapdoor Problem Using Three-Dimensional Discrete Element Method 被引量:1
11
作者 Qizhi Chen ChuliXu +3 位作者 Baoping Zou Zhanyou Luo Changjie Xu Xu Long 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1503-1520,共18页
Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor ... Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor test was an importantmilestone in the development of theories on soil arching.The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional(3D)discrete element method(DEM).Five 3D trapdoor models with different heights are established by 3DDEMsoftware PFC 3D.The variation of earth pressure on the trapdoor with the downward movement of the trapdoor,the distribution of vertical earth pressure along the horizontal direction,the distribution of vertical earth pressure along the vertical direction,the distribution of lateral earth pressure coefficient along the depth direction,the magnitude and direction of contact force chain are studied,respectively.Related research results show that the earth pressure on the trapdoor decreases rapidly after the downward movement of the trapdoor,and then reaches the minimum earth pressure.After that,the earth’s pressure will rise slightly,and whether this phenomenon occurs depends on the depth ratio.For the bottom soil,due to the stress transfer caused by the soil arching effect,the ratio of earth pressure in the loose area decreases,while the ratio of earth pressure in the stable area increases.With the trapdoor moving down,the vertical earth pressure along the depth in the stable zone is basically consistent with the initial state,which shows an approximate linear distribution.After the trapdoor moves down,the distribution of earth pressure along with the depth in the loose area changes,which is far less than the theoretical value of vertical earth pressure of its self-weight.Because of the compression of the soil on both sides,the lateral earth pressure coefficient of most areas on the central axis of the loose zone is close to the passive earth pressure coefficient Kp.The existence of a‘soil arch’can be observed intuitively from the distribution diagram of the contact force chain in the loose zone. 展开更多
关键词 Soil arching effect three dimensional discrete element earth pressure contact force chain
下载PDF
Soil-structure interaction of unsymmetrical trench installation culvert 被引量:8
12
作者 陈保国 郑俊杰 鲁燕儿 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期94-98,共5页
The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately ... The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately reflect the changes in vertical loads on trench installation culverts. So the changes in vertical earth pressure and soil arching effect in the backfill for an unsymmetrical trench installation culvert are studied based on a full scale experiment and finite element (FE) simulation. The variation laws of foundation pressure and settlement are also analyzed. Meanwhile, the influence of eccentric load induced by an unsymmetrical trench installation on the interaction of a soil- structure system is discussed. Results show that soil arch is formed when the backfill on the culvert reaches a certain height. It can relieve the earth pressure concentration on the crest of the culvert, but it is instable. The earth pressures obtained by full scale experiment and numerical simulation are greater than those calculated by the current CGCDHBC method. The eccentric load effect on the culvert has a significant influence on the stress states and deformation of the soil-structure system. 展开更多
关键词 soil-structure interaction soil arching effect eccentric load effect full scale experiment numerical simulation
下载PDF
Investigation of the short-term stress distribution in stopes and drifts backfilled with cemented paste backfill 被引量:7
13
作者 Pengyu Yang Li Li 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期721-728,共8页
Cemented paste backfill(CPB) is largely used in underground mines worldwide.A key issue associated with application of CPB is to estimate the stresses in backfilled stopes and on barricades.Recent numerical and experi... Cemented paste backfill(CPB) is largely used in underground mines worldwide.A key issue associated with application of CPB is to estimate the stresses in backfilled stopes and on barricades.Recent numerical and experimental results show that arching effect is absent shortly after the placement of CPB in stopes.However,stress decreases in barricade drift with increasing distance between the measurement points and drawpoint have also been observed,demonstrating arching effect shortly after the pouring of CPB.To explain these paradoxes,CPB is considered as Bingham fluid having a yield shear stress.Three dimensional analytical solutions are proposed to evaluate the short-term total stresses in backfilled stopes and on barricades,accounting for the CPB's yield shear stress-induced arching effect.Stress diminution due to such arching effect in the backfilled stopes and on barricades is indeed obtained.But the reduction becomes insignificant using typical yield shear stress and stope geometry.More analyses indicate that the typical yield shear stress values do not fully correspond to field conditions where the yield shear stress would increase exponentially due to apparent consolidation(loss of water by drainage,a phenomenon similar to the desiccation of overly saturated fine-grained materials). 展开更多
关键词 Mines Cemented paste backfill Yield shear stress Short-term total stresses arching effect Analytical solutions
下载PDF
Wind Speed Forecasting Based on ARMA-ARCH Model in Wind Farms 被引量:3
14
作者 He Yu Gao Shan Chen Hao 《Electricity》 2011年第3期30-34,共5页
Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series... Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value. 展开更多
关键词 short-term wind speed forecasting ARMA model ARCH effect volatility clustering
下载PDF
Loosening earth pressure above shallow trapdoor in unsaturated soil with different groundwater level
15
作者 Yun ZHAO Zhongfang YANG +1 位作者 Zhanglong CHEN Daosheng LING 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第10期1626-1635,共10页
The consideration of unsaturated conditions is infrequently addressed in current Terzaghi’s soil arching research.A modified analytical method for calculation of unsaturated loosening earth pressure above shallow tra... The consideration of unsaturated conditions is infrequently addressed in current Terzaghi’s soil arching research.A modified analytical method for calculation of unsaturated loosening earth pressure above shallow trapdoor is proposed in this paper.By assuming the existence of a vertical slip surface above the trapdoor,the stress state of the soil in the loosening area are delineated in the extended Mohr–Coulomb circle.To account for the non-uniform distribution of vertical stress at arbitrary points along the horizontal differential soil trip,a virtual rotation circle trajectory of major principal stress is employed.Subsequently,the average vertical stress acting on the soil trip is determined through integral approach.Taking into account the influence of matric suction on soil weight and apparent cohesion,the differential equation governing the soil trip is solved analytically for cases of uniform matric suction distribution and alternatively using the finite difference method for scenarios involving non-uniform matric suction distribution.The proposed method’s validity is confirmed through comparison with published results.The parameter analysis indicates that the loosening earth pressure initially decreases and subsequently increases with the increase of the soil saturation.With the rise of groundwater level,the normalized effective loosening earth pressure shows a decreasing trend. 展开更多
关键词 soil arching effect unsaturated soil trapdoor test loosening earth pressure groundwater level variation
原文传递
Experimental investigation of face instability for tunnels in sandy cobble strata 被引量:6
16
作者 Qiguang Di Pengfei Li +1 位作者 Mingju Zhang Xiaopu Cui 《Underground Space》 SCIE EI CSCD 2023年第3期199-216,共18页
In order to investigate the influence of face instability for tunnels with different burial depths in sandy cobble strata on earth pressure and the instability region,geomechanical model tests and numerical simulation... In order to investigate the influence of face instability for tunnels with different burial depths in sandy cobble strata on earth pressure and the instability region,geomechanical model tests and numerical simulations were performed.The continuous excavation method was adopted to reduce the pressure of the soil bin and restore the real engineering situation.Earth pressure in three directions of the obser-vation section in front of the tunnel face was monitored during the tunneling of the shield.Evolutions of the lateral stress ratios at dif-ferent stages were also investigated.The instability area of the shield tunnel face in sandy cobble strata with different burial depth ratios during the instability stage was obtained based on the change ratio of earth pressure and compared with existing researches.The earth pressure began to change when the excavation was one shield diameter away from the observation section,and when the excavation reached the observation section,the earth pressure decreased significantly.The burial depth of shield tunnel in the sandy cobble strata has a significant impact on the evolution of soil arch and the size of the failure area.The numerical simulation of the continuum medium cannot reflect the stress redistribution characteristics of the granular body like sandy cobble strata,and the failure area or stress distur-bance area obtained by the model test is larger than the numerical simulation result.Existing methods have deviations in analyzing the failure area of shield tunnel face in sandy cobble strata.It provides not only guidance for shield tunnel excavation engineering in sandy cobble strata,but also a reference for the theoretical research on failure areas. 展开更多
关键词 Geomechanical model test Sandy cobble strata Face stability arching effect Shield tunnel
下载PDF
Study on Geomechanical and Physical Models of Necking-Type Slopes 被引量:2
17
作者 Kun Fang Huiming Tang +4 位作者 Jichen Zhu Zijin Fu Pengju An Bocheng Zhang Chunyan Tang 《Journal of Earth Science》 SCIE CAS CSCD 2023年第3期924-934,共11页
A simplified geomechanical model was proposed by considering three typical neckingtype slopes;this model lays a foundation for the further investigation of the deformation behaviors of such slopes.Three physical model... A simplified geomechanical model was proposed by considering three typical neckingtype slopes;this model lays a foundation for the further investigation of the deformation behaviors of such slopes.Three physical models of necking-type slopes were built according to the geomechanical model with slope evolution stages.Finally,preliminary calculations related to the arching effect in the physical model were conducted.Three evolution stages of necking-type slopes,namely,the initial stage,compression stage,and failure stage,were presented based on the formation and disappearance of the arching effect within the slope.The specific parameters of the geomechanical model were given.In the setup of the tilting test,the failure angle of the necking-type slope model was calculated to be approximately 50°with a large lateral resistance coefficient.The proposed geomechanical model and physical models of necking-type slopes provide guidance for the establishment of geomechanical and physical models of landslides at specific sites. 展开更多
关键词 geomechanical model physical model necking-type slope slope stability arching effect
原文传递
Analytical solutions of limit support pressure and vertical earth pressure on cutting face for tunnels 被引量:1
18
作者 Pengfei Li Xiaopu Cui +1 位作者 Junwei Xia Xinyu Wang 《Underground Space》 SCIE EI CSCD 2023年第5期65-78,共14页
This paper focuses on theoretical analytical models to calculate the limit support pressure and vertical earth pressure on the cutting face for tunnels.The failure zone is divided into two parts:a sliding failure zone... This paper focuses on theoretical analytical models to calculate the limit support pressure and vertical earth pressure on the cutting face for tunnels.The failure zone is divided into two parts:a sliding failure zone and an upper loosen zone,and the limit support pressure calculation equation is derived.To verify the rationality of the theoretical model,it was compared with the existing theory,numerical simulation,and centrifugal test,and then the parameter analysis was carried out.The results show that the results of this paper agree well with the existing theory,numerical simulation,and centrifugal test.The inclination angle of the proposed mechanism is determined based on the results of the existing centrifuge test,and the recommended inclination angle is between 52°+φ/2 and 54°+φ/2.The method is proven to be safe and accurate.It can provide a theoretical basis for similar projects. 展开更多
关键词 Instability and failure Excavation face stability Global method Soil arch effect Limit support pressure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部