A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented i...A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.展开更多
The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different ...The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor.展开更多
In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pu...In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.展开更多
Drive system is the key device of armored chassis. Its working state and reliability influence the maneuver performance of armored chassis directly. In order to simulate the failure process and evaluate the service re...Drive system is the key device of armored chassis. Its working state and reliability influence the maneuver performance of armored chassis directly. In order to simulate the failure process and evaluate the service reliability of drive system in training or battle missions,a new kind of dynamic simulation model and driving simulation platform of the complete drive system were established based on virtual prototype and finite element technology in this paper. Using the platform, the kinematics and dynamic characteristics of drive system were studied and analyzed in detail,the dynamic load spectrum of key components was obtained,the service life was predicted, and the service reliability evaluation results were provided. A simulation example of transmission gear was shown to illustrate the simulation and evaluation process. The result proves that the simulation method not only can be used to compute and evaluate the service reliability of complex mechanical mechanism, but also has high precision and reasonable computational cost. Therefore,simulation and reliability analysis based on virtual prototype of the armored chassis drive system will provide scientific reference for the formulation of armored chassis reasonable repair cycle.展开更多
Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind o...Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.展开更多
The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite el...The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above.展开更多
Vibration monitoring and vibration severity evaluation of armored vehicle transmission are realized by additional sensors. An algorithm of vibration severity in frequency domain is presented. The algorithm has powerfu...Vibration monitoring and vibration severity evaluation of armored vehicle transmission are realized by additional sensors. An algorithm of vibration severity in frequency domain is presented. The algorithm has powerful applicability for signal type and flexible selectivity for frequency range,and avoids the processing of signal conversion used calculus and filtering compared to the algorithm of vibration severity in time domain. An applied example is given in company with attentive proceedings and measures for improving evaluation effect.展开更多
Human errors of seven types of armored equipment, which occur during the course of field test, are statistically analyzed. The human error-to-armored equipment failure ratio is obtained. The causes of human errors are...Human errors of seven types of armored equipment, which occur during the course of field test, are statistically analyzed. The human error-to-armored equipment failure ratio is obtained. The causes of human errors are analyzed. The distribution law of human errors is acquired. The ratio of human errors and human reliability index are also calculated.展开更多
In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method ...In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method to realize testability growth is introduced.Centering on the testability growth demands of new armored equipment,the deficiencies of traditional FMECA are analyzed.And an enhanced FMECA( EFMECA) method is proposed.The method increases the analysis contents,combines the information before the failure occurrence and impending failure modes together organically.Then the failure symptoms is analyzed,the failure modes and effects is determined,and the state development trend is predicted.Finally,the application of EFMECA method is illustrated by the example of the failure mode of typical armored equipment engine.展开更多
Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and ...Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and components in the powerhouse of the vehicle, thus the study can be regarded as an attempt for the theory's engineering applications in the field of tank & armored vehicle design. It is proved that most parts of the solutions attained are reasonable, and some of the solutions are innovative.展开更多
When the mechanical drive is changed into the electric transmission,the cooling system of the engine compartment should be altered to meet the new requirement for the increasing in equipment such as electric apparatus...When the mechanical drive is changed into the electric transmission,the cooling system of the engine compartment should be altered to meet the new requirement for the increasing in equipment such as electric apparatus.In order to predict and analyze the rationality of cooling system in the virtual engine compartment,the numerical simulation of airflow fields in the engine compartment by using computational fluid dynamics(CFD) technique is necessary.An armored vehicle with electric transmission in the research is taken as the research object.The physical model and mathematical model for the computation of 3D air flow and heat transfer in the engine compartment of an armored vehicle with electric transmission is established.Turbulent flow in the compartment is described by using the standard k-ε two-equation turbulence model.The temperature and velocity fields of 3D air flow in the engine compartment are numerically simulated and analyzed based on different fan's flux.A theoretical basis for determination of the fan's flux is given by the simulation results.The positions of the air-vent shutter are analyzed.The simulation results show that the different positions of the air-vent shutter can lead to different cooling efficiencies.展开更多
基金co-financed by the European Regional Development Fund of the European UnionGreek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429)。
文摘A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.
基金funded by the National Natural Science Foundation of China(W.Zhang,Grant No.12220101002)Shaanxi Provincial Key Science and Technology Innovation Team(Y.Xu,Grant No.2023-CX-TD-14)+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi,China(D.Jia,Grant No.20230240)the Chinese Studentship Council(D.Jia,Grant No.201908060224).
文摘The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor.
文摘In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.
文摘Drive system is the key device of armored chassis. Its working state and reliability influence the maneuver performance of armored chassis directly. In order to simulate the failure process and evaluate the service reliability of drive system in training or battle missions,a new kind of dynamic simulation model and driving simulation platform of the complete drive system were established based on virtual prototype and finite element technology in this paper. Using the platform, the kinematics and dynamic characteristics of drive system were studied and analyzed in detail,the dynamic load spectrum of key components was obtained,the service life was predicted, and the service reliability evaluation results were provided. A simulation example of transmission gear was shown to illustrate the simulation and evaluation process. The result proves that the simulation method not only can be used to compute and evaluate the service reliability of complex mechanical mechanism, but also has high precision and reasonable computational cost. Therefore,simulation and reliability analysis based on virtual prototype of the armored chassis drive system will provide scientific reference for the formulation of armored chassis reasonable repair cycle.
文摘Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.
基金Project(2008AA09Z201)supported by the National High Technology Research and Development Program of China
文摘The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above.
基金Sponsored by National Defense Science and Technology Key Lab Foundation of China (51457120104JB3505)
文摘Vibration monitoring and vibration severity evaluation of armored vehicle transmission are realized by additional sensors. An algorithm of vibration severity in frequency domain is presented. The algorithm has powerful applicability for signal type and flexible selectivity for frequency range,and avoids the processing of signal conversion used calculus and filtering compared to the algorithm of vibration severity in time domain. An applied example is given in company with attentive proceedings and measures for improving evaluation effect.
文摘Human errors of seven types of armored equipment, which occur during the course of field test, are statistically analyzed. The human error-to-armored equipment failure ratio is obtained. The causes of human errors are analyzed. The distribution law of human errors is acquired. The ratio of human errors and human reliability index are also calculated.
文摘In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method to realize testability growth is introduced.Centering on the testability growth demands of new armored equipment,the deficiencies of traditional FMECA are analyzed.And an enhanced FMECA( EFMECA) method is proposed.The method increases the analysis contents,combines the information before the failure occurrence and impending failure modes together organically.Then the failure symptoms is analyzed,the failure modes and effects is determined,and the state development trend is predicted.Finally,the application of EFMECA method is illustrated by the example of the failure mode of typical armored equipment engine.
基金Sponsored by the National Natural Science Foundation of China under Grant( 50335040).
文摘Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and components in the powerhouse of the vehicle, thus the study can be regarded as an attempt for the theory's engineering applications in the field of tank & armored vehicle design. It is proved that most parts of the solutions attained are reasonable, and some of the solutions are innovative.
文摘When the mechanical drive is changed into the electric transmission,the cooling system of the engine compartment should be altered to meet the new requirement for the increasing in equipment such as electric apparatus.In order to predict and analyze the rationality of cooling system in the virtual engine compartment,the numerical simulation of airflow fields in the engine compartment by using computational fluid dynamics(CFD) technique is necessary.An armored vehicle with electric transmission in the research is taken as the research object.The physical model and mathematical model for the computation of 3D air flow and heat transfer in the engine compartment of an armored vehicle with electric transmission is established.Turbulent flow in the compartment is described by using the standard k-ε two-equation turbulence model.The temperature and velocity fields of 3D air flow in the engine compartment are numerically simulated and analyzed based on different fan's flux.A theoretical basis for determination of the fan's flux is given by the simulation results.The positions of the air-vent shutter are analyzed.The simulation results show that the different positions of the air-vent shutter can lead to different cooling efficiencies.