Hot compression experiments were conducted on Ti 15 3 alloy specimens using Gleeble 1500 Thermal Simulator.These tests were focused to obtain the flow stress data under various conditions of strain,strain rate and tem...Hot compression experiments were conducted on Ti 15 3 alloy specimens using Gleeble 1500 Thermal Simulator.These tests were focused to obtain the flow stress data under various conditions of strain,strain rate and temperature. On the basis of these data, the predicting model for the nonlinear relation between flow stress and deformation strain,strain rate and temperature for Ti 15 3 alloy was developed with a back propagation artificial neural network method. Results show that the neural network can reproduce the flow stress in the sampled data and predict the nonsampled data well. Thus the neural network method has been verified to be used to tackle hot deformation problems of Ti 15 3 alloy. [展开更多
Healthcare security and privacy breaches are occurring in the United States (US), and increased substantially during the pandemic. This paper reviews the National Institute of Standards and Technology (NIST) publicati...Healthcare security and privacy breaches are occurring in the United States (US), and increased substantially during the pandemic. This paper reviews the National Institute of Standards and Technology (NIST) publication base as an effective solution. The NIST Special Publication 800-66 Revision 1 was an essential standard in US healthcare, which was withdrawn in February 2024 and superseded by SP 800-66 Revision 2. This review investigates the academic papers concerning the application of the NIST SP 800-66 Revision 1 standard in the US healthcare literature. A systematic review method was used in this study to determine current knowledge gaps of the SP 800-66 Revision 1. Some limitations were employed in the search to enforce validity. A total of eleven articles were found eligible for the study. Consequently, this study suggests the necessity for additional academic papers pertaining to SP 800-66 Revision 2 in the US healthcare literature. In turn, it will enhance awareness of safeguarding electronic protected health information (ePHI), help to mitigate potential future risks, and eventually reduce breaches.展开更多
In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers' comfort, etc., it is very common to generate road profles based on the equation p...In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers' comfort, etc., it is very common to generate road profles based on the equation provided by ISO 8608 standard, according to which it is possible to group road surface profiles into eight different classes. However, real profiles are significantly different from the artificial ones because of the non-stationary fea- ture of the first ones and the not full capability of the ISO 8608 equation to correctly describe the frequency content of real road profiles. In this paper, the international roughness index, the frequency-weighted vertical acceleration awz according to ISO 2631, and the dynamic load index are applied both on artificial and real profiles, highlighting the different results obtained. The analysis carried out in this work has highlighted some limitation of the ISO 8608 approach in the description of performance and conditions of real pavement profiles. Furthermore, the different sensitivity of the various indices to the fitted power spectral density parameters is shown, which should be taken into account when performing analysis using artificial profiles.展开更多
In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial ...In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial boundary treat- ments. With the discrete equation regarded as an atomic lattice with a three-atom potential, two accurate artificial boundary conditions are first derived here. Reflection co- efficient and numerical tests illustrate the capability of the proposed methods. In particular, the time history treatment gives an exact boundary condition, yet with sensitivity to nu- merical implementations. The ALEX (almost EXact) bound- ary condition is numerically more effective.展开更多
To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexe...To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.展开更多
The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of defor...The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of deformation temperature and strain rate on the flow stress of Ti-6Al-2Zr-IMo-IV alloy was studied. Based on the experimental data sets, the high temperature deformation behavior of Ti-6A1-2Zr-IMo-IV alloy was presented using the intelligent method of artificial neural network (ANN). The results indicate that the predicted flow stress values by ANN model is quite consistent with the experimental results, which implies that the artificial neural network is an effective tool for studying the hot deformation behavior of the present alloy. In addition, the development of graphical user interface is implemented using Visual Basic programming language.展开更多
The pressing bonding of steel plate with QTi3.5-3.5graphite slurry was studied. The relationship among preheating temperature of steel plate, preheating temperature of dies, solid fraction of QTi3.5-3.5graphite slurry...The pressing bonding of steel plate with QTi3.5-3.5graphite slurry was studied. The relationship among preheating temperature of steel plate, preheating temperature of dies, solid fraction of QTi3.5-3.5graphite slurry, and interfacial shear strength of bonding plate could be established with artificial neural networks perfectly. This model could be optimized with a genetic algorithm. The results show that the optimum bonding parameters are: 618℃ for preheating temperature of steel plate, 526℃ for preheating temperature of dies and 46.2% for solid fraction of QTi3.5-3.5graphite slurry, and the largest interfacial shear strength of bonding plate is 128.3 MPa.展开更多
Artificial antigen-presenting cells are expected to stimulate the expansion and acquisition of optimal therapeutic features of T cells before infusion. Here CD32 that binds to a crystallizable fragment of IgG monoclon...Artificial antigen-presenting cells are expected to stimulate the expansion and acquisition of optimal therapeutic features of T cells before infusion. Here CD32 that binds to a crystallizable fragment of IgG monoclonal antibody was genetically expressed on human K562 leukemia cells to provide a ligand for T-cell receptor. CD86 and 4-1BBL, which are ligands of co-stimulating receptors of CD28 and 4-1BB, respectively, were also expressed on K562 cells. Then we accomplished the artificial antigen-presenting cells by coupling K32/CD86/4-1BBL cell with OKT3 monoclonal antibody against CD3, named K32/CD86/4-1BBL/OKT3 cells. These artificial modified cells had the abilities of inducing CD8^+ T cell activation, promoting CD8^+ T cell proliferation, division, and long-term growth, inhibiting CD8^+ T cell apoptosis, and enhancing CD8^+ T cell secretion of IFN-T and perforin. Furthermore, antigen-specific cytotoxic T lymphocytes could be retained in the culture stimulated with K32/CD86/4-1BBL/OKT3 cells at least within 28 days. This approach was robust, simple, reproducible and economical for expansion and activation of CD8^+ T cells and may have important therapeutic implications for adoptive immunotherapy. Cellular & Molecular Immunology.展开更多
The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed ...The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed by experimental means. A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of2.3%-11.2% and that the corresponding errors of velocities vary in the range of 1.3%-15.8%. The flow field numerical results show that upstream and vortices exist when the current passes over and through the surface of the reef model. This study suggests that the numerical simulation method can be applied to predict the forces and flow field associated with artificial reefs.展开更多
Flashover on polluted insulators is the most common accident occuring in power system.A great amount of work has been done to study the flashover characteristics on various kinds of insulators with several theoretical...Flashover on polluted insulators is the most common accident occuring in power system.A great amount of work has been done to study the flashover characteristics on various kinds of insulators with several theoretical models proposed.In these models,the amount and the distribution of the pollution on the insulator is critical to the flashover performance.However,very few simulation works has been carried out to study the pollution accumulation characteristics on the insulators.In this paper,both experimental and numerical efforts were given to study the pollution accumulation characteristics in order to evaluate the flashover probability.Experiments were performed first to have a bird view on the overall pollution distributions considering several crucial influential factors such as the wind speed and wind direction.AC porcelain insulators(XWP_2-160 type) were selected as the experimental samples and the equivalent salt deposit density(ESDD) was measured after the total predetermined amount of pollution was reached.Then, aerodynamic simulation was carried out to study the airflow and velocity distributions on each part of the insulator in clean air with regard to different wind speed and direction.It was found that the amount of the pollution on each section of the insulator has clear connections to the wind speed or air pressure distribution on the insulator surface.These distributions coincide to the pollution distribution obtained from experiments.Besides,the wind speed and air pressure distribution along the insulator chain was also studied.This work has shown that the numerical simulation may predict the pollution distribution on the insulators with practical accuracy.It is also possible to design new insulator shapes to reduce the pollution accumulation on critical areas according to the analysis in this work.展开更多
Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. M...Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output dam. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrpolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrpulation contrasts with integrity re-analysis. Any layer SSHLPS among 1-8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is appfied into the same topological structure, with reduced distortion and assured precision.展开更多
Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the...Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the motor model equations are described.The fault related features are extracted.An immune memory dynamic clonal strategy(IMDCS)system is applied to detecting the stator faults of induction motor.Four features are obtained from the induction motor,and then these features are given to the IMDCS system.After the motor condition has been learned by the IMDCS system,the memory set obtained in the training stage can be used to detect any fault.The proposed method is experimentally implemented on the induction motor,and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of stator winding turn faults in induction motors.展开更多
Synthetic molecules that can mediate the coupled transport of Cl^(-) with K^(+) and/or Na+across the lipid bilayers have aroused great interest due to their potential as a novel therapeutic strategy by disrupting cell...Synthetic molecules that can mediate the coupled transport of Cl^(-) with K^(+) and/or Na+across the lipid bilayers have aroused great interest due to their potential as a novel therapeutic strategy by disrupting cellular ion homeostasis.Based on the structural advantages of molecular rotaxanes,we herein show that two rotaxane-based transporters[2]R and[3]R induce coupled K^(+)/Cl^(-) channel transport by introducing Cl^(-) recognition sites in the thread and K^(+) binding group in the wheel,respectively.The welldesigned molecular structures allow the insertion of unimolecular rotaxanes into the lipid bilayer,thus achieving effective ion transport by means of thermodynamically controlled movement and driven by the difference in ion concentration inside and outside the vesicles.In addition,the use of a three-component rotaxane can accelerate ion transport through a cooperative shuttlerelay mechanism in which two wheels move along the thread in the lipid membrane,thereby enabling[3]R to have higher ion transport capacity.This work represents a major advance in the use of rotaxane molecules to accomplish more complex and effective tasks.展开更多
文摘Hot compression experiments were conducted on Ti 15 3 alloy specimens using Gleeble 1500 Thermal Simulator.These tests were focused to obtain the flow stress data under various conditions of strain,strain rate and temperature. On the basis of these data, the predicting model for the nonlinear relation between flow stress and deformation strain,strain rate and temperature for Ti 15 3 alloy was developed with a back propagation artificial neural network method. Results show that the neural network can reproduce the flow stress in the sampled data and predict the nonsampled data well. Thus the neural network method has been verified to be used to tackle hot deformation problems of Ti 15 3 alloy. [
文摘Healthcare security and privacy breaches are occurring in the United States (US), and increased substantially during the pandemic. This paper reviews the National Institute of Standards and Technology (NIST) publication base as an effective solution. The NIST Special Publication 800-66 Revision 1 was an essential standard in US healthcare, which was withdrawn in February 2024 and superseded by SP 800-66 Revision 2. This review investigates the academic papers concerning the application of the NIST SP 800-66 Revision 1 standard in the US healthcare literature. A systematic review method was used in this study to determine current knowledge gaps of the SP 800-66 Revision 1. Some limitations were employed in the search to enforce validity. A total of eleven articles were found eligible for the study. Consequently, this study suggests the necessity for additional academic papers pertaining to SP 800-66 Revision 2 in the US healthcare literature. In turn, it will enhance awareness of safeguarding electronic protected health information (ePHI), help to mitigate potential future risks, and eventually reduce breaches.
文摘In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers' comfort, etc., it is very common to generate road profles based on the equation provided by ISO 8608 standard, according to which it is possible to group road surface profiles into eight different classes. However, real profiles are significantly different from the artificial ones because of the non-stationary fea- ture of the first ones and the not full capability of the ISO 8608 equation to correctly describe the frequency content of real road profiles. In this paper, the international roughness index, the frequency-weighted vertical acceleration awz according to ISO 2631, and the dynamic load index are applied both on artificial and real profiles, highlighting the different results obtained. The analysis carried out in this work has highlighted some limitation of the ISO 8608 approach in the description of performance and conditions of real pavement profiles. Furthermore, the different sensitivity of the various indices to the fitted power spectral density parameters is shown, which should be taken into account when performing analysis using artificial profiles.
基金supported by the National Natural Science Foundation of China(11272009)National Basic Research Program of China(2010CB731503)U.S. National Science Foundation(0900498)
文摘In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial boundary treat- ments. With the discrete equation regarded as an atomic lattice with a three-atom potential, two accurate artificial boundary conditions are first derived here. Reflection co- efficient and numerical tests illustrate the capability of the proposed methods. In particular, the time history treatment gives an exact boundary condition, yet with sensitivity to nu- merical implementations. The ALEX (almost EXact) bound- ary condition is numerically more effective.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.
基金Project (2007CB613807) supported by the National Basic Research Program of ChinaProject (35-TP-2009) supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject (51075333) supported by the National Natural Science Foundation of China
文摘The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of deformation temperature and strain rate on the flow stress of Ti-6Al-2Zr-IMo-IV alloy was studied. Based on the experimental data sets, the high temperature deformation behavior of Ti-6A1-2Zr-IMo-IV alloy was presented using the intelligent method of artificial neural network (ANN). The results indicate that the predicted flow stress values by ANN model is quite consistent with the experimental results, which implies that the artificial neural network is an effective tool for studying the hot deformation behavior of the present alloy. In addition, the development of graphical user interface is implemented using Visual Basic programming language.
基金This project was supported by the National Natural Science Foundation of China(No.50274047 and 50304001)the Bejing Jiaotong University Foundation.
文摘The pressing bonding of steel plate with QTi3.5-3.5graphite slurry was studied. The relationship among preheating temperature of steel plate, preheating temperature of dies, solid fraction of QTi3.5-3.5graphite slurry, and interfacial shear strength of bonding plate could be established with artificial neural networks perfectly. This model could be optimized with a genetic algorithm. The results show that the optimum bonding parameters are: 618℃ for preheating temperature of steel plate, 526℃ for preheating temperature of dies and 46.2% for solid fraction of QTi3.5-3.5graphite slurry, and the largest interfacial shear strength of bonding plate is 128.3 MPa.
基金the National Natural Science Foundation of China(No.30400399,No.30671917)the Natural Science Fund of Jiangsu Province(BK2004404) the Natural Science Fund of the Educational Committee of Jiangsu Province(04KJB320162) in China.
文摘Artificial antigen-presenting cells are expected to stimulate the expansion and acquisition of optimal therapeutic features of T cells before infusion. Here CD32 that binds to a crystallizable fragment of IgG monoclonal antibody was genetically expressed on human K562 leukemia cells to provide a ligand for T-cell receptor. CD86 and 4-1BBL, which are ligands of co-stimulating receptors of CD28 and 4-1BB, respectively, were also expressed on K562 cells. Then we accomplished the artificial antigen-presenting cells by coupling K32/CD86/4-1BBL cell with OKT3 monoclonal antibody against CD3, named K32/CD86/4-1BBL/OKT3 cells. These artificial modified cells had the abilities of inducing CD8^+ T cell activation, promoting CD8^+ T cell proliferation, division, and long-term growth, inhibiting CD8^+ T cell apoptosis, and enhancing CD8^+ T cell secretion of IFN-T and perforin. Furthermore, antigen-specific cytotoxic T lymphocytes could be retained in the culture stimulated with K32/CD86/4-1BBL/OKT3 cells at least within 28 days. This approach was robust, simple, reproducible and economical for expansion and activation of CD8^+ T cells and may have important therapeutic implications for adoptive immunotherapy. Cellular & Molecular Immunology.
基金Supported by the National High Technology Research and Development Program of China(863 Programs)(No.2006AA100301)Science and Technology Development Program of Shandong Province(No.2005GG3205102)
文摘The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed by experimental means. A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of2.3%-11.2% and that the corresponding errors of velocities vary in the range of 1.3%-15.8%. The flow field numerical results show that upstream and vortices exist when the current passes over and through the surface of the reef model. This study suggests that the numerical simulation method can be applied to predict the forces and flow field associated with artificial reefs.
基金Supported by East China Grid Company Ltd(200933- 04316C156)
文摘Flashover on polluted insulators is the most common accident occuring in power system.A great amount of work has been done to study the flashover characteristics on various kinds of insulators with several theoretical models proposed.In these models,the amount and the distribution of the pollution on the insulator is critical to the flashover performance.However,very few simulation works has been carried out to study the pollution accumulation characteristics on the insulators.In this paper,both experimental and numerical efforts were given to study the pollution accumulation characteristics in order to evaluate the flashover probability.Experiments were performed first to have a bird view on the overall pollution distributions considering several crucial influential factors such as the wind speed and wind direction.AC porcelain insulators(XWP_2-160 type) were selected as the experimental samples and the equivalent salt deposit density(ESDD) was measured after the total predetermined amount of pollution was reached.Then, aerodynamic simulation was carried out to study the airflow and velocity distributions on each part of the insulator in clean air with regard to different wind speed and direction.It was found that the amount of the pollution on each section of the insulator has clear connections to the wind speed or air pressure distribution on the insulator surface.These distributions coincide to the pollution distribution obtained from experiments.Besides,the wind speed and air pressure distribution along the insulator chain was also studied.This work has shown that the numerical simulation may predict the pollution distribution on the insulators with practical accuracy.It is also possible to design new insulator shapes to reduce the pollution accumulation on critical areas according to the analysis in this work.
基金This project is supported by Provincial Natural Science Foundation of Shanxi, China (No. 20041074)Provincial Natural Science Youth Foundation of Shanxi, China (No. 20051030)Provincial Education Office Key Subject of Shanxi, China (No. 20045027-20045028)
文摘Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output dam. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrpolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrpulation contrasts with integrity re-analysis. Any layer SSHLPS among 1-8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is appfied into the same topological structure, with reduced distortion and assured precision.
基金National Natural Science Foundation of China(No.61105114)the Key Technology R&D Program of Jiangsu Province,China(No.BE2010189)
文摘Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the motor model equations are described.The fault related features are extracted.An immune memory dynamic clonal strategy(IMDCS)system is applied to detecting the stator faults of induction motor.Four features are obtained from the induction motor,and then these features are given to the IMDCS system.After the motor condition has been learned by the IMDCS system,the memory set obtained in the training stage can be used to detect any fault.The proposed method is experimentally implemented on the induction motor,and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of stator winding turn faults in induction motors.
基金supported by the National Natural Science Foundation of China(22171085)the Shanghai Science Technology Communication(21ZR1415500)Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission,Grant 2021 Sci&Tech 03-28)。
文摘Synthetic molecules that can mediate the coupled transport of Cl^(-) with K^(+) and/or Na+across the lipid bilayers have aroused great interest due to their potential as a novel therapeutic strategy by disrupting cellular ion homeostasis.Based on the structural advantages of molecular rotaxanes,we herein show that two rotaxane-based transporters[2]R and[3]R induce coupled K^(+)/Cl^(-) channel transport by introducing Cl^(-) recognition sites in the thread and K^(+) binding group in the wheel,respectively.The welldesigned molecular structures allow the insertion of unimolecular rotaxanes into the lipid bilayer,thus achieving effective ion transport by means of thermodynamically controlled movement and driven by the difference in ion concentration inside and outside the vesicles.In addition,the use of a three-component rotaxane can accelerate ion transport through a cooperative shuttlerelay mechanism in which two wheels move along the thread in the lipid membrane,thereby enabling[3]R to have higher ion transport capacity.This work represents a major advance in the use of rotaxane molecules to accomplish more complex and effective tasks.