An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antib...An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antibody's fitness and setting the dynamic threshold value. Numerical experiments show that compared with the genetic algorithm and the originally real-valued coding artificial immune algorithm, the improved algorithm possesses high speed of convergence and good performance for preventing premature convergence.展开更多
Objective To find out more extrema simultaneously including global optimum and multiple local optima existed in multi-modal functions. Methods Germinal center is the generator and selector of high-affinity B cells, a ...Objective To find out more extrema simultaneously including global optimum and multiple local optima existed in multi-modal functions. Methods Germinal center is the generator and selector of high-affinity B cells, a multicellular group's artificial immune algorithm was proposed based on the germinal center reaction mechanism of natural immune systems. Main steps of the algorithm were given, including hyper-mutation, selection, memory, similarity suppression and recruitment of B cells and the convergence of it was proved. Results The algorithm has been tested to optimize various multi-modal functions, and the simulation results show that the artificial immune algorithm proposed here can find multiple extremum of these functions with lower computational cost. Conclusion The algorithm is valid and can converge on the satisfactory solution set D with probability 1 and approach to global solution and many local optimal solutions existed.展开更多
Aiming at the current problems of high failure rate and low diagnostic efficiency of railway point machines(RPMs)in the railway industry,a short-time method of fault diagnosis is proposed.Considering the effect of noi...Aiming at the current problems of high failure rate and low diagnostic efficiency of railway point machines(RPMs)in the railway industry,a short-time method of fault diagnosis is proposed.Considering the effect of noise on power signals in the data acquisition process of the railway centralized signaling monitoring(CSM)system,this study utilizes wavelet threshold denoising to eliminate interference.The results show that the accuracy of fault diagnosis can be improved by 4.4% after denoising the power signals.Then in order to attain a lighter weight and shorten the running time of the diagnosis model,Mallat wavelet decomposition and artificial immune algorithm are applied to RPM fault diagnosis.Finally,voluminous experiments using veritable power signals collected from CSM are introduced,which show that combining these methods can procure higher precision of RPMs and curtail fault diagnosis time.This substantiates the validity and feasibility of the presented approach.展开更多
Thread partition plays an important role in speculative multithreading (SpMT) for automatic parallelization of ir- regular programs. Using unified values of partition parameters to partition different applications l...Thread partition plays an important role in speculative multithreading (SpMT) for automatic parallelization of ir- regular programs. Using unified values of partition parameters to partition different applications leads to the fact that every ap- plication cannot own its optimal partition scheme. In this paper, five parameters affecting thread partition are extracted from heuristic rules. They are the dependence threshold (DT), lower limit of thread size (TSL), upper limit of thread size (TSU), lower limit of spawning distance (SDL), and upper limit of spawning distance (SDU). Their ranges are determined in accordance with heuristic rules, and their step-sizes are set empirically. Under the condition of setting speedup as an objective function, all com- binations of five threshold values form the solution space, and our aim is to search for the best combination to obtain the best thread granularity, thread dependence, and spawning distance, so that every application has its best partition scheme. The issue can be attributed to a single objective optimization problem. We use the artificial immune algorithm (AIA) to search for the optimal solution. On Prophet, which is a generic SpMT processor to evaluate the performance of multithreaded programs, Olden bench- marks are used to implement the process. Experiments show that we can obtain the optimal parameter values for every benchmark, and Olden benchmarks partitioned with the optimized parameter values deliver a performance improvement of 3.00% on a 4-core platform compared with a machine learning based approach, and 8.92% compared with a heuristics-based approach.展开更多
A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,mu...A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,multi-scale variation and gradient-based diversity was modeled.Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens,a sigmoid model that can clearly describe clonal proliferation was proposed.In addition,with the introduction of multiple populations and multi-scale variation,the algorithm can well maintain the population diversity during the dynamic searching process.Unlike traditional artificial immune algorithms,which require randomly generated cells added to the current population to explore its fitness landscape,AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments.Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks.Preliminary experiments show that AIDE can maintain high population diversity during the search process,simultaneously can speed up the optimization.Thus,AIDE is useful for the optimization of dynamic environments.展开更多
Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high ...Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.展开更多
Currently,coal mining faces the uncertainty of the risk of coal and gas outbursts and inaccurate prediction results.Owing to this,an artificial immune algorithm(AIA)was developed for coal and gas outburst prediction b...Currently,coal mining faces the uncertainty of the risk of coal and gas outbursts and inaccurate prediction results.Owing to this,an artificial immune algorithm(AIA)was developed for coal and gas outburst prediction based on the Hamming distance(HD)calculation method of antibody and antigen affinity called the Hamming distance artificial intelligence algorithm(HDAIA).The correlation matrix of coal and gas outburst indicators was constructed using the interpolation function in the algorithm.The HD algorithm was used to obtain the affinity between the antibody and antigen,and the minimum HD was screened to obtain the prediction result.The collected dynamic data of the drilling cuttings gas desorption index Ki and the drilling cuttings weight S during the excavation process of the 11,192-working face of a coal mine in Guizhou Province,China,were used as prediction indices.The results indicate that the prediction result of the HDAIA for the risk of coal and gas outbursts is consistent with the actual risk of outbursts,and it has a good prediction of the risk of coal and gas outbursts.The HDAIA can be used as a novel method for predicting the risk of coal and gas outbursts.展开更多
A "sign" on a lung CT image refers to a radiologic finding that suggests a pathological progression of some specific disease. Analysis of CT signs is helpful to understand the pathological origin of the lesi...A "sign" on a lung CT image refers to a radiologic finding that suggests a pathological progression of some specific disease. Analysis of CT signs is helpful to understand the pathological origin of the lesion. In-depth study of lung nodules classification with different CT signs will help to distinguish benign and malignant nodules more clearly and accurately. To this end, we propose an Inception module-based ensemble classification method for pulmonary nodule diagnosis with different nodule signs. We first construct a Convolutional Neural Network(CNN) classifier adopting Inception modules and pre-train it on ImageNet. We then fine-tune this pre-trained classifier on 10 different lung nodule sign sample sets, and fuse these 10 classifiers with an artificial immune ensemble algorithm. The overall sensitivity, specificity, and accuracy of our proposed Artificial Immune Algorithm-based Inception Networks Fusion(AIA-INF) algorithm are 82.22%, 93.17%, and 88.67%, respectively, which are significantly higher than those of the alternative Bagging and Boosting methods. The experimental results show that our Inception-based ensemble classifier offers promising performance, and compared with other CADx systems, this scheme can offer a more detailed reference for diagnosis, and can be valuable for junior radiologist training.展开更多
文摘An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antibody's fitness and setting the dynamic threshold value. Numerical experiments show that compared with the genetic algorithm and the originally real-valued coding artificial immune algorithm, the improved algorithm possesses high speed of convergence and good performance for preventing premature convergence.
文摘Objective To find out more extrema simultaneously including global optimum and multiple local optima existed in multi-modal functions. Methods Germinal center is the generator and selector of high-affinity B cells, a multicellular group's artificial immune algorithm was proposed based on the germinal center reaction mechanism of natural immune systems. Main steps of the algorithm were given, including hyper-mutation, selection, memory, similarity suppression and recruitment of B cells and the convergence of it was proved. Results The algorithm has been tested to optimize various multi-modal functions, and the simulation results show that the artificial immune algorithm proposed here can find multiple extremum of these functions with lower computational cost. Conclusion The algorithm is valid and can converge on the satisfactory solution set D with probability 1 and approach to global solution and many local optimal solutions existed.
基金supported by grants from the National Natural Science Foundation of China(Grant No.61661027)the Project Fund of China National Railway Group Co.,Ltd(Grant No.N2022G012).
文摘Aiming at the current problems of high failure rate and low diagnostic efficiency of railway point machines(RPMs)in the railway industry,a short-time method of fault diagnosis is proposed.Considering the effect of noise on power signals in the data acquisition process of the railway centralized signaling monitoring(CSM)system,this study utilizes wavelet threshold denoising to eliminate interference.The results show that the accuracy of fault diagnosis can be improved by 4.4% after denoising the power signals.Then in order to attain a lighter weight and shorten the running time of the diagnosis model,Mallat wavelet decomposition and artificial immune algorithm are applied to RPM fault diagnosis.Finally,voluminous experiments using veritable power signals collected from CSM are introduced,which show that combining these methods can procure higher precision of RPMs and curtail fault diagnosis time.This substantiates the validity and feasibility of the presented approach.
基金supported by the National Natural Science Foundation of China(No.61173040)the Doctoral Fund of Ministry of Education of China(No.2013021110012)
文摘Thread partition plays an important role in speculative multithreading (SpMT) for automatic parallelization of ir- regular programs. Using unified values of partition parameters to partition different applications leads to the fact that every ap- plication cannot own its optimal partition scheme. In this paper, five parameters affecting thread partition are extracted from heuristic rules. They are the dependence threshold (DT), lower limit of thread size (TSL), upper limit of thread size (TSU), lower limit of spawning distance (SDL), and upper limit of spawning distance (SDU). Their ranges are determined in accordance with heuristic rules, and their step-sizes are set empirically. Under the condition of setting speedup as an objective function, all com- binations of five threshold values form the solution space, and our aim is to search for the best combination to obtain the best thread granularity, thread dependence, and spawning distance, so that every application has its best partition scheme. The issue can be attributed to a single objective optimization problem. We use the artificial immune algorithm (AIA) to search for the optimal solution. On Prophet, which is a generic SpMT processor to evaluate the performance of multithreaded programs, Olden bench- marks are used to implement the process. Experiments show that we can obtain the optimal parameter values for every benchmark, and Olden benchmarks partitioned with the optimized parameter values deliver a performance improvement of 3.00% on a 4-core platform compared with a machine learning based approach, and 8.92% compared with a heuristics-based approach.
基金Project(60625302) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(2009CB320603) supported by the National Basic Research Program of China+5 种基金Projects(10dz1121900,10JC1403400) supported by Shanghai Key Technologies R & D ProgramProject supported by the Fundamental Research Funds for the Central Universities in ChinaProject(200802511011) supported by the New Teacher Program of Specialized Research Fund for the Doctoral Program of Higher Education in ChinaProject(Y1090548) supported by Zhejiang Provincial Natural Science Fund,ChinaProject(2011C21077) supported by Zhejiang Technology Programme,ChinaProject(2011A610173) supported by Ningbo Natural Science Fund,China
文摘A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,multi-scale variation and gradient-based diversity was modeled.Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens,a sigmoid model that can clearly describe clonal proliferation was proposed.In addition,with the introduction of multiple populations and multi-scale variation,the algorithm can well maintain the population diversity during the dynamic searching process.Unlike traditional artificial immune algorithms,which require randomly generated cells added to the current population to explore its fitness landscape,AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments.Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks.Preliminary experiments show that AIDE can maintain high population diversity during the search process,simultaneously can speed up the optimization.Thus,AIDE is useful for the optimization of dynamic environments.
文摘Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.
基金supported by the National Natural Science Foundation of China(Nos.51974120 and 52274196)。
文摘Currently,coal mining faces the uncertainty of the risk of coal and gas outbursts and inaccurate prediction results.Owing to this,an artificial immune algorithm(AIA)was developed for coal and gas outburst prediction based on the Hamming distance(HD)calculation method of antibody and antigen affinity called the Hamming distance artificial intelligence algorithm(HDAIA).The correlation matrix of coal and gas outburst indicators was constructed using the interpolation function in the algorithm.The HD algorithm was used to obtain the affinity between the antibody and antigen,and the minimum HD was screened to obtain the prediction result.The collected dynamic data of the drilling cuttings gas desorption index Ki and the drilling cuttings weight S during the excavation process of the 11,192-working face of a coal mine in Guizhou Province,China,were used as prediction indices.The results indicate that the prediction result of the HDAIA for the risk of coal and gas outbursts is consistent with the actual risk of outbursts,and it has a good prediction of the risk of coal and gas outbursts.The HDAIA can be used as a novel method for predicting the risk of coal and gas outbursts.
文摘A "sign" on a lung CT image refers to a radiologic finding that suggests a pathological progression of some specific disease. Analysis of CT signs is helpful to understand the pathological origin of the lesion. In-depth study of lung nodules classification with different CT signs will help to distinguish benign and malignant nodules more clearly and accurately. To this end, we propose an Inception module-based ensemble classification method for pulmonary nodule diagnosis with different nodule signs. We first construct a Convolutional Neural Network(CNN) classifier adopting Inception modules and pre-train it on ImageNet. We then fine-tune this pre-trained classifier on 10 different lung nodule sign sample sets, and fuse these 10 classifiers with an artificial immune ensemble algorithm. The overall sensitivity, specificity, and accuracy of our proposed Artificial Immune Algorithm-based Inception Networks Fusion(AIA-INF) algorithm are 82.22%, 93.17%, and 88.67%, respectively, which are significantly higher than those of the alternative Bagging and Boosting methods. The experimental results show that our Inception-based ensemble classifier offers promising performance, and compared with other CADx systems, this scheme can offer a more detailed reference for diagnosis, and can be valuable for junior radiologist training.