In the area of pattern recognition and machine learning,features play a key role in prediction.The famous applications of features are medical imaging,image classification,and name a few more.With the exponential grow...In the area of pattern recognition and machine learning,features play a key role in prediction.The famous applications of features are medical imaging,image classification,and name a few more.With the exponential growth of information investments in medical data repositories and health service provision,medical institutions are collecting large volumes of data.These data repositories contain details information essential to support medical diagnostic decisions and also improve patient care quality.On the other hand,this growth also made it difficult to comprehend and utilize data for various purposes.The results of imaging data can become biased because of extraneous features present in larger datasets.Feature selection gives a chance to decrease the number of components in such large datasets.Through selection techniques,ousting the unimportant features and selecting a subset of components that produces prevalent characterization precision.The correct decision to find a good attribute produces a precise grouping model,which enhances learning pace and forecast control.This paper presents a review of feature selection techniques and attributes selection measures for medical imaging.This review is meant to describe feature selection techniques in a medical domainwith their pros and cons and to signify its application in imaging data and data mining algorithms.The review reveals the shortcomings of the existing feature and attributes selection techniques to multi-sourced data.Moreover,this review provides the importance of feature selection for correct classification of medical infections.In the end,critical analysis and future directions are provided.展开更多
Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,...Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.展开更多
With the increased advancements of smart industries,cybersecurity has become a vital growth factor in the success of industrial transformation.The Industrial Internet of Things(IIoT)or Industry 4.0 has revolutionized ...With the increased advancements of smart industries,cybersecurity has become a vital growth factor in the success of industrial transformation.The Industrial Internet of Things(IIoT)or Industry 4.0 has revolutionized the concepts of manufacturing and production altogether.In industry 4.0,powerful IntrusionDetection Systems(IDS)play a significant role in ensuring network security.Though various intrusion detection techniques have been developed so far,it is challenging to protect the intricate data of networks.This is because conventional Machine Learning(ML)approaches are inadequate and insufficient to address the demands of dynamic IIoT networks.Further,the existing Deep Learning(DL)can be employed to identify anonymous intrusions.Therefore,the current study proposes a Hunger Games Search Optimization with Deep Learning-Driven Intrusion Detection(HGSODLID)model for the IIoT environment.The presented HGSODL-ID model exploits the linear normalization approach to transform the input data into a useful format.The HGSO algorithm is employed for Feature Selection(HGSO-FS)to reduce the curse of dimensionality.Moreover,Sparrow Search Optimization(SSO)is utilized with a Graph Convolutional Network(GCN)to classify and identify intrusions in the network.Finally,the SSO technique is exploited to fine-tune the hyper-parameters involved in the GCN model.The proposed HGSODL-ID model was experimentally validated using a benchmark dataset,and the results confirmed the superiority of the proposed HGSODL-ID method over recent approaches.展开更多
Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been us...Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone,requiring no additional information. This paper describes the fundamental ideas behind RST-based approaches,reviews related FS methods built on these ideas,and analyses more frequently used RST-based traditional FS algorithms such as Quickreduct algorithm,entropy based reduct algorithm,and relative reduct algorithm. It is found that some of the drawbacks in the existing algorithms and our proposed improved algorithms can overcome these drawbacks. The experimental analyses have been carried out in order to achieve the efficiency of the proposed algorithms.展开更多
Along with the wide application of e-mail nowadays, many spam e-mails flood into people’s email-boxes and cause catastrophes to their study and life. In anti-spam e-mails campaign, we depend on not only legal measure...Along with the wide application of e-mail nowadays, many spam e-mails flood into people’s email-boxes and cause catastrophes to their study and life. In anti-spam e-mails campaign, we depend on not only legal measures but also technological approaches. The Bayesian classifier provides a simple and effective approach to discriminate classification. This paper presents a new improved Bayesian-based anti-spam e-mail filter. We adopt a way of attribute selection based on word entropy, use vector weights which are represented by word frequency, and deduce its corresponding formula. It is proved that our filter improves total performances apparently in our experiment.展开更多
Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time.With the use of mobile devices,communication services generate numerous data for every moment....Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time.With the use of mobile devices,communication services generate numerous data for every moment.Given the increasing dense population of data,traffic learning and prediction are the main components to substantially enhance the effectiveness of demand-aware resource allocation.A novel deep learning technique called radial kernelized LSTM-based connectionist Tversky multilayer deep structure learning(RKLSTM-CTMDSL)model is introduced for traffic prediction with superior accuracy and minimal time consumption.The RKLSTM-CTMDSL model performs attribute selection and classification processes for cellular traffic prediction.In this model,the connectionist Tversky multilayer deep structure learning includes multiple layers for traffic prediction.A large volume of spatial-temporal data are considered as an input-to-input layer.Thereafter,input data are transmitted to hidden layer 1,where a radial kernelized long short-term memory architecture is designed for the relevant attribute selection using activation function results.After obtaining the relevant attributes,the selected attributes are given to the next layer.Tversky index function is used in this layer to compute similarities among the training and testing traffic patterns.Tversky similarity index outcomes are given to the output layer.Similarity value is used as basis to classify data as heavy network or normal traffic.Thus,cellular network traffic prediction is presented with minimal error rate using the RKLSTM-CTMDSL model.Comparative evaluation proved that the RKLSTM-CTMDSL model outperforms conventional methods.展开更多
To improve the detection rate and lower down the false positive rate in intrusion detection system, dimensionality reduction is widely used in the intrusion detection system. For this purpose, a data processing (DP)...To improve the detection rate and lower down the false positive rate in intrusion detection system, dimensionality reduction is widely used in the intrusion detection system. For this purpose, a data processing (DP) with support vector machine (SVM) was built. Different from traditiona/ly identifying the redundant data before purging the audit data by expert knowledge or utilizing different kinds of subsets of the available 41-connection attributes to build a classifier, the proposed strategy first removes the attributes whose correlation with another attribute exceeds a threshold, and then classifies two sequence samples as one class while removing either of the two samples whose similarity exceeds a threshold. The results of performance experiments showed that the strategy of DP and SVM is superior to the other existing data reduction strategies ( e. g. , audit reduction, rule extraction, and feature selection), and that the detection model based on DP and SVM outperforms those based on data mining, soft computing, and hierarchical principal component analysis neural networks.展开更多
The corona virus, which causes the respiratory infection Covid-19, was first detected in late 2019. It then spread quickly across the globe in the first months of 2020, reaching more than 15 million confirmed cases by...The corona virus, which causes the respiratory infection Covid-19, was first detected in late 2019. It then spread quickly across the globe in the first months of 2020, reaching more than 15 million confirmed cases by the second half of July. This global impact of the novel coronavirus (COVID-19) requires accurate forecasting about the spread of confirmed cases as well as continuation of analysis of the number of deaths and recoveries. Forecasting requires a huge amount of data. At the same time, forecasts are highly influenced by the reliability of the data, vested interests, and what variables are being predicted. Again, human behavior plays an important role in efficiently controling the spread of novel coronavirus. This paper introduces a sustainable approach for predicting the mortality risk during the pandemic to help medical decision making and raise public health awareness. This paper describes the range of symptoms for corona virus suffered patients and the ways of predicting patient mortality rate based on their symptoms.展开更多
文摘In the area of pattern recognition and machine learning,features play a key role in prediction.The famous applications of features are medical imaging,image classification,and name a few more.With the exponential growth of information investments in medical data repositories and health service provision,medical institutions are collecting large volumes of data.These data repositories contain details information essential to support medical diagnostic decisions and also improve patient care quality.On the other hand,this growth also made it difficult to comprehend and utilize data for various purposes.The results of imaging data can become biased because of extraneous features present in larger datasets.Feature selection gives a chance to decrease the number of components in such large datasets.Through selection techniques,ousting the unimportant features and selecting a subset of components that produces prevalent characterization precision.The correct decision to find a good attribute produces a precise grouping model,which enhances learning pace and forecast control.This paper presents a review of feature selection techniques and attributes selection measures for medical imaging.This review is meant to describe feature selection techniques in a medical domainwith their pros and cons and to signify its application in imaging data and data mining algorithms.The review reveals the shortcomings of the existing feature and attributes selection techniques to multi-sourced data.Moreover,this review provides the importance of feature selection for correct classification of medical infections.In the end,critical analysis and future directions are provided.
基金ACKNOWLEDGEMENTS The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. The research has been partly supported by National Natural Science Foundation of China No. 61272528 and No. 61034005, and the Central University Fund (ID-ZYGX2013J073).
文摘Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R319)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR44The authors are thankful to the Deanship of Scientific Research at Najran University for funding thiswork under theResearch Groups Funding program Grant Code(NU/RG/SERC/11/4).
文摘With the increased advancements of smart industries,cybersecurity has become a vital growth factor in the success of industrial transformation.The Industrial Internet of Things(IIoT)or Industry 4.0 has revolutionized the concepts of manufacturing and production altogether.In industry 4.0,powerful IntrusionDetection Systems(IDS)play a significant role in ensuring network security.Though various intrusion detection techniques have been developed so far,it is challenging to protect the intricate data of networks.This is because conventional Machine Learning(ML)approaches are inadequate and insufficient to address the demands of dynamic IIoT networks.Further,the existing Deep Learning(DL)can be employed to identify anonymous intrusions.Therefore,the current study proposes a Hunger Games Search Optimization with Deep Learning-Driven Intrusion Detection(HGSODLID)model for the IIoT environment.The presented HGSODL-ID model exploits the linear normalization approach to transform the input data into a useful format.The HGSO algorithm is employed for Feature Selection(HGSO-FS)to reduce the curse of dimensionality.Moreover,Sparrow Search Optimization(SSO)is utilized with a Graph Convolutional Network(GCN)to classify and identify intrusions in the network.Finally,the SSO technique is exploited to fine-tune the hyper-parameters involved in the GCN model.The proposed HGSODL-ID model was experimentally validated using a benchmark dataset,and the results confirmed the superiority of the proposed HGSODL-ID method over recent approaches.
基金supported by the UGC, SERO, Hyderabad under FDP during XI plan period, and the UGC, New Delhi for financial assistance under major research project Grant No. F-34-105/2008
文摘Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone,requiring no additional information. This paper describes the fundamental ideas behind RST-based approaches,reviews related FS methods built on these ideas,and analyses more frequently used RST-based traditional FS algorithms such as Quickreduct algorithm,entropy based reduct algorithm,and relative reduct algorithm. It is found that some of the drawbacks in the existing algorithms and our proposed improved algorithms can overcome these drawbacks. The experimental analyses have been carried out in order to achieve the efficiency of the proposed algorithms.
文摘Along with the wide application of e-mail nowadays, many spam e-mails flood into people’s email-boxes and cause catastrophes to their study and life. In anti-spam e-mails campaign, we depend on not only legal measures but also technological approaches. The Bayesian classifier provides a simple and effective approach to discriminate classification. This paper presents a new improved Bayesian-based anti-spam e-mail filter. We adopt a way of attribute selection based on word entropy, use vector weights which are represented by word frequency, and deduce its corresponding formula. It is proved that our filter improves total performances apparently in our experiment.
文摘Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time.With the use of mobile devices,communication services generate numerous data for every moment.Given the increasing dense population of data,traffic learning and prediction are the main components to substantially enhance the effectiveness of demand-aware resource allocation.A novel deep learning technique called radial kernelized LSTM-based connectionist Tversky multilayer deep structure learning(RKLSTM-CTMDSL)model is introduced for traffic prediction with superior accuracy and minimal time consumption.The RKLSTM-CTMDSL model performs attribute selection and classification processes for cellular traffic prediction.In this model,the connectionist Tversky multilayer deep structure learning includes multiple layers for traffic prediction.A large volume of spatial-temporal data are considered as an input-to-input layer.Thereafter,input data are transmitted to hidden layer 1,where a radial kernelized long short-term memory architecture is designed for the relevant attribute selection using activation function results.After obtaining the relevant attributes,the selected attributes are given to the next layer.Tversky index function is used in this layer to compute similarities among the training and testing traffic patterns.Tversky similarity index outcomes are given to the output layer.Similarity value is used as basis to classify data as heavy network or normal traffic.Thus,cellular network traffic prediction is presented with minimal error rate using the RKLSTM-CTMDSL model.Comparative evaluation proved that the RKLSTM-CTMDSL model outperforms conventional methods.
基金The National Natural Science Foundation ofChina (No.60672049)
文摘To improve the detection rate and lower down the false positive rate in intrusion detection system, dimensionality reduction is widely used in the intrusion detection system. For this purpose, a data processing (DP) with support vector machine (SVM) was built. Different from traditiona/ly identifying the redundant data before purging the audit data by expert knowledge or utilizing different kinds of subsets of the available 41-connection attributes to build a classifier, the proposed strategy first removes the attributes whose correlation with another attribute exceeds a threshold, and then classifies two sequence samples as one class while removing either of the two samples whose similarity exceeds a threshold. The results of performance experiments showed that the strategy of DP and SVM is superior to the other existing data reduction strategies ( e. g. , audit reduction, rule extraction, and feature selection), and that the detection model based on DP and SVM outperforms those based on data mining, soft computing, and hierarchical principal component analysis neural networks.
文摘The corona virus, which causes the respiratory infection Covid-19, was first detected in late 2019. It then spread quickly across the globe in the first months of 2020, reaching more than 15 million confirmed cases by the second half of July. This global impact of the novel coronavirus (COVID-19) requires accurate forecasting about the spread of confirmed cases as well as continuation of analysis of the number of deaths and recoveries. Forecasting requires a huge amount of data. At the same time, forecasts are highly influenced by the reliability of the data, vested interests, and what variables are being predicted. Again, human behavior plays an important role in efficiently controling the spread of novel coronavirus. This paper introduces a sustainable approach for predicting the mortality risk during the pandemic to help medical decision making and raise public health awareness. This paper describes the range of symptoms for corona virus suffered patients and the ways of predicting patient mortality rate based on their symptoms.