期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
K-Ar Dating of Authigenic Illites and Its Applications to the Study of Hydrocarbon Charging Histories of Typical Sandstone Reservoirs in Tarim Basin, China 被引量:6
1
作者 ZhangYouyu HorstZwingmann +2 位作者 AndrewTodd LiuKeyu LuoXiuquan 《Petroleum Science》 SCIE CAS CSCD 2005年第2期12-24,81,共14页
The Tarim Basin in China comprises eight sets of sandstone reservoirs, five of which are investigated in detail in this study. The main purpose of this study is to investigate the hydrocarbon charging histories of res... The Tarim Basin in China comprises eight sets of sandstone reservoirs, five of which are investigated in detail in this study. The main purpose of this study is to investigate the hydrocarbon charging histories of reservoirs by applying K-Ar dating of authigenic illites. The ages of authigenic illites from the Lower Silurian bituminous sandstones in the Central Uplift area range from 383.5 to 235.2 Ma, suggesting that the Silurian oil accumulations were formed from the late Caledonian till the late Hercynian. The ages of authigenic illites from the Upper Devonian Donghe Sandstone reservoirs range from 263.8 to 231.3 Ma, indicating that hydrocarbon accumulations within the Donghe sandstone were formed mainly in the late Hercynian. The authigenic illites ages from the Lower Jurassic Yangxia Group sandstones in the Yinan-2 gas reservoir (Yinan-2, Kuqa Depression) range from 28.1 to 23.9 Ma, suggesting that the initial hydrocarbon charging occurred in the Miocene. The ages of the authigenic illites from the Lower Cretaceous sandstones in the Akemomu gas field (Ake-1, Kashi Sag, Southwest Depression) range from 22.6 to 18.8 Ma, indicating a probable early oil accumulation or early migration of hydrocarbon within this area. The illites from the Paleogene sandstones in the Dina-2 gas reservoir (Dina-201, Kuqa Depression) have a detrital origin; they cannot be used to study the hydrocarbon charging histories. The ages of authigenic illites in the underlying Cretaceous sandstones in the same well (Dina-201) range from 25.5 to 15.5 Ma, indicating that hydrocarbon charging in this reservoir probably occurred within the Miocene. This study highlights the potential of applying K-Ar dating of authigenic illites to investigate the timing of hydrocarbon charging histories of the Tarim Basin reservoir sandstones. 展开更多
关键词 K-Ar dating authigenic illite hydrocarbon charge sandstone reservoirs Tarim Basin
下载PDF
Evaluation of 40^Ar/39^Ar Geochronology of Authigenic Illites in Determining Hydrocarbon Charge Timing: A Case Study from the Silurian Bituminous Sandstone Reservoirs, Tarim Basin, China 被引量:1
2
作者 ZHANG Youyu LIU Keyu LUO Xiuquan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期684-703,共20页
The Silurian bituminous sandstones(SBS) in the Tarim Basin, China are important basinwide reservoirs with an estimated area of approximately 249000 km^2. We investigated the ages of authigenic illites in the SBS res... The Silurian bituminous sandstones(SBS) in the Tarim Basin, China are important basinwide reservoirs with an estimated area of approximately 249000 km^2. We investigated the ages of authigenic illites in the SBS reservoirs and constrained their formation timing by using the 40^Ar/39^Ar step wise heating method. The age spectra, 39^Ar recoil loss and their controlling factors were investigated systematically. The 40^Ar/39^Ar ages were compared with the conventional K/Ar ages of identical clay fractions. The clay in the SBS reservoirs is dominated by orderly mixed-layer illite/smectite(I/S) with 5%–30% smectite layers. The I/S minerals morphology comprises primarily honeycomb, short filamentous and curved-lath particles, characteristic of authigenic illites. The unencapsulated 40^Ar/39^Ar total gas ages(UTGA) of the authigenic illites range from 188.56 ± 6.20 Ma to 491.86 ± 27.68 Ma, which are 7% to 103% older than the corresponding K/Ar ages of 124.87 ± 1.11 Ma to 383.45 ± 2.80 Ma, respectively. The K-Ar ages indicate multistage accumulations with distinct distribution patterns in the Tarim Basin: older(late Caledonian-early Hercynian) around the basin margin, younger(late Hercynian) in the basin centre, and the youngest(middle to late Yanshanian) in the Ha-6 well-block, central area of the North Uplift. The age difference is believed to have been caused by the 39^Ar recoil loss during the irradiation process. Compared with the K/Ar ages, the estimated 39^Ar recoil losses in this study are in the range from 7% to 51%. The 39^Ar recoil loss appears to increase not only with the decreasing particle sizes of the I/S, but also with increasing percentage of smectite layers(IR) of the I/S, and smectite layer content(SLC) of the samples. We conclude that due to significant 39^Ar recoil losses, UTGA may not offer any meaningful geological ages of the authigenic illite formation in the SBS and thus can not be used to represent the hydrocarbon charge timing. 39^Ar recoil losses during 40^Ar/39^Ar dating can not be neglected when dating fine authigenic illite, especially when the ordered mixed-layer I/S containing small amount of smectite layers(IR30%) in the reservoir formations. Compared with the unencapsulated Ar-Ar method, the conventional K-Ar method is less complicated, more accurate and reliable in dating authigenic illites in petroleum reservoirs. 展开更多
关键词 authigenic illite 40^Ar/39^Ar dating 39^Ar recoil loss accumulation timing Silurian bituminous sandstone Tarim Basin
下载PDF
What Caused the Inconsistency between Rb-Sr and^(40)Ar-^(39)Ar Ages of Authigenic Illites? 被引量:1
3
作者 Entao Liu I.Tonguc Uysal +2 位作者 Jian-Xin Zhao Zi'ao Zhang Xudong Lin 《Journal of Earth Science》 SCIE CAS CSCD 2022年第5期1145-1151,共7页
Radiogenic isotope dating of illitic clays has been widely used to reconstruct thermal and fluid flow events in siliciclastic sedimentary basins,the information of which is critical to investigate mechanisms of hydroc... Radiogenic isotope dating of illitic clays has been widely used to reconstruct thermal and fluid flow events in siliciclastic sedimentary basins,the information of which is critical to investigate mechanisms of hydrocarbon maturation.This study carried out Rb-Sr and^(40)Ar-^(39)Ar dating of authigenic illitic clay samples separated from the Palaeogene sandstone in the northern South China Sea.Our Rb-Sr data further confirm the previously reported three periods of fluid flow events(at 34.5±0.9,31.2±0.6,and 23.6±0.8 Ma,respectively)in the northern South China Sea,which are related to regional episodic tectonism.However,^(40)Ar-^(39)Ar ages of illite obtained in this study are significantly younger than the corresponding Rb-Sr ages.The significantly younger^(40)Ar-^(39)Ar ages were probably due to ^(40)Ar loss caused by later dry heating events on the Hainan Island that have not affected the Rb-Sr isotopic systematics.The inconsistency between Rb-Sr and^(40)Ar-^(39)Ar data should be attributed to different isotopic behaviors of K-Ar and Rb-Sr isotopic systematics in illite.Our results indicate that Rb-Sr isotopic dating method may be a preferential approach for clay dating in geological settings where exist younger dry heating events. 展开更多
关键词 authigenic illite isotope dating Rb−Sr isochron ^(40)Ar-^(39)Ar dating INCONSISTENCY geochemistry
原文传递
Fracture development and hydrocarbon accumulation in tight sandstone reservoirs of the Paleogene Huagang Formation in the central reversal tectonic belt of the Xihu Sag, East China Sea 被引量:2
4
作者 ZHOU Xinhuai XU Guosheng +1 位作者 CUI Hengyuan ZHANG Wu 《Petroleum Exploration and Development》 2020年第3期499-512,共14页
By using thin section identification, cathodoluminescence, major and trace elements and fluid inclusion tests and authigenic illite dating, based on observation of core cracks, combined with the microscopic characteri... By using thin section identification, cathodoluminescence, major and trace elements and fluid inclusion tests and authigenic illite dating, based on observation of core cracks, combined with the microscopic characteristics and imaging logging characteristics of fractures, the stages of the fractures in the Huagang Formation of the central reversal tectonic belt of the Xihu Sag in the East China Sea, and the matching relationship between the fracture development stages and the oil and gas charging stages are clarified. There are diagenetic fractures and tectonic fractures in the reservoirs of the Huagang Formation in the study area. The diagenetic fractures developed during the diagenetic stage of the reservoirs and have less effect on oil and gas migration and transport. The tectonic fractures are divided into three stages based on tectonic movements controlling the fractures and their relationships with hydrocarbon charging: The first stage of fractures was generated in the early stage of the Himalayan Movement–Longjing Movement(12–13 Ma ago), when the tectonic stress caused the sutures and shale strips to twist, deform, and break. Tectonic microfractures generated in this period had short extension, narrow width, and poor effectiveness, and had little effect on oil and gas migration and transport. The second stage of fractures came up during the middle-late period of Himalayan Movement–Longjing Movement(9–12 Ma ago), when tectonic movements caused the development of tectonic fractures in the central reversal tectonic belt, these fractures are of large scale, long extension, and good effectiveness, and matched with the first stage of large scale oil and gas charging(9–12 Ma ago), so they play an important role in oil and gas migration, transportation, and accumulation. The third stage of fractures were created from Himalayan Movement–Okinawa Trough movement to the present day(0–3 Ma ago), the fractures are tectonic ones developing successively;matching with the second stage(0–3 Ma ago) of large-scale oil and gas charging, they created conditions for continuous natural gas migration and transportation. All these prove that the development of reservoir fractures in the Huagang Formation of Xihu Sag can provide seepage space and continuous and effective channels for efficient migration and accumulation of oil and gas. 展开更多
关键词 authigenic illite fluid inclusion analysis fracture characteristics oil and gas charging Paleogene Huagang Formation Xihu Sag
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部