期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on a Monte Carlo global variance reduction method based on an automatic importance sampling method 被引量:1
1
作者 Yi-Sheng Hao Zhen Wu +3 位作者 Shen-Shen Gao Rui Qiu Hui Zhang Jun-Li Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期200-215,共16页
Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS m... Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method. 展开更多
关键词 Monte Carlo Global variance reduction Reactor shielding automatic importance sampling
下载PDF
A fully automatic and high-accuracy surface water mapping framework on Google Earth Engine using Landsat time-series 被引量:2
2
作者 Linwei Yue Baoguang Li +2 位作者 Shuang Zhu Qiangqiang Yuan Huanfeng Shen 《International Journal of Digital Earth》 SCIE EI 2023年第1期210-233,共24页
Efficient and continuous monitoring of surface water is essential for water resource management.Much effort has been devoted to the task of water mapping based on remote sensing images.However,few studies have fully c... Efficient and continuous monitoring of surface water is essential for water resource management.Much effort has been devoted to the task of water mapping based on remote sensing images.However,few studies have fully considered the diverse spectral properties of water for the collection of reference samples in an automatic manner.Moreover,water area statistics are sensitive to the satellite image observation quality.This study aims to develop a fully automatic surface water mapping framework based on Google Earth Engine(GEE)with a supervised random forest classifier.A robust scheme was built to automatically construct training samples by merging the information from multi-source water occurrence products.The samples for permanent and seasonal water were mapped and collected separately,so that the supplement of seasonal samples can increase the spectral diversity of the sample space.To reduce the uncertainty of the derived water occurrences,temporal correction was applied to repair the classification maps with invalid observations.Extensive experiments showed that the proposed method can generate reliable samples and produce good-quality water mapping results.Comparative tests indicated that the proposed method produced water maps with a higher quality than the index-based detection methods,as well as the GSWD and GLAD datasets. 展开更多
关键词 Water mapping automatic training samples temporal correction Google Earth Engine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部