Electricity is crucial for critical sectors such as banking, healthcare, education, and business. However, in developing nations like Cameroon, persistent power fluctuations and outages present significant challenges,...Electricity is crucial for critical sectors such as banking, healthcare, education, and business. However, in developing nations like Cameroon, persistent power fluctuations and outages present significant challenges, leading to communication disruptions, food spoilage, water supply interruptions, and financial losses. This study proposes a novel solution: a three-input automatic transfer switch integrated with Internet of Things (IoT) and data logging capabilities. The system automatically switches between three independent power sources based on priority and availability, employing electromechanical contactors, relays, and timers for seamless switching. It incorporates ATMEGA328P microcontrollers, a GSM module for communication, and an SD card module for efficient data logging. Safety measures, such as miniature circuit breakers, voltage monitoring relays, and proper grounding, ensure user protection and system integrity. A user-friendly mobile application enables remote manual switching and real-time system information requests, while SMS notifications inform consumers about power source changes. The system has a power rating of 4.752 kW, accommodating a maximum continuous load of the same value. Voltage dividers provide a reliable 3.37 VDC output from a 12 VDC input, and data logging operates effectively by storing system data onto an SD card every 1.5 seconds. Comprehensive testing validates the system’s performance, with an average percentage error of 2.31% compared to actual values, falling within an acceptable range. This solution distinguishes itself by incorporating modern technologies like data logging and IoT, addressing the limitations of existing alternatives.展开更多
Busbar Automatic Transfer Switch (BATS) is very important for power distribution reliability. However, BATS can’t consider whether it cause overloading of devices after it acts. In this paper, we introduce the design...Busbar Automatic Transfer Switch (BATS) is very important for power distribution reliability. However, BATS can’t consider whether it cause overloading of devices after it acts. In this paper, we introduce the design principle of Automatic BATS control from whole architecture including its function, strategy and a rule of on-off. On the other hand, the running experience and effect is also introduced. Site operation shows that the proposed method is feasible and it can ensure power grid reliability.展开更多
A fast automatic AC-DC switch is designed and fabricated mainly by a microcontroller and three double poles single throw reed relays.This new switch is introduced to establish a fully automated system for AC-DC measur...A fast automatic AC-DC switch is designed and fabricated mainly by a microcontroller and three double poles single throw reed relays.This new switch is introduced to establish a fully automated system for AC-DC measurements through ACDC transfer standards for the first time at the National Institute for standards(N IS)in Egypt.The implemented circuit of theautomatic AC-DC switch and its protection are presented in details.An AC voltage source is calibrated against DC voltagesource by using the demonstrated automatic switch as an application The calibrated voltage ranges are2V,6V,20V and60V as examples.The uncertainty budget is also evaluated for the calibrated values.展开更多
文摘Electricity is crucial for critical sectors such as banking, healthcare, education, and business. However, in developing nations like Cameroon, persistent power fluctuations and outages present significant challenges, leading to communication disruptions, food spoilage, water supply interruptions, and financial losses. This study proposes a novel solution: a three-input automatic transfer switch integrated with Internet of Things (IoT) and data logging capabilities. The system automatically switches between three independent power sources based on priority and availability, employing electromechanical contactors, relays, and timers for seamless switching. It incorporates ATMEGA328P microcontrollers, a GSM module for communication, and an SD card module for efficient data logging. Safety measures, such as miniature circuit breakers, voltage monitoring relays, and proper grounding, ensure user protection and system integrity. A user-friendly mobile application enables remote manual switching and real-time system information requests, while SMS notifications inform consumers about power source changes. The system has a power rating of 4.752 kW, accommodating a maximum continuous load of the same value. Voltage dividers provide a reliable 3.37 VDC output from a 12 VDC input, and data logging operates effectively by storing system data onto an SD card every 1.5 seconds. Comprehensive testing validates the system’s performance, with an average percentage error of 2.31% compared to actual values, falling within an acceptable range. This solution distinguishes itself by incorporating modern technologies like data logging and IoT, addressing the limitations of existing alternatives.
文摘Busbar Automatic Transfer Switch (BATS) is very important for power distribution reliability. However, BATS can’t consider whether it cause overloading of devices after it acts. In this paper, we introduce the design principle of Automatic BATS control from whole architecture including its function, strategy and a rule of on-off. On the other hand, the running experience and effect is also introduced. Site operation shows that the proposed method is feasible and it can ensure power grid reliability.
文摘A fast automatic AC-DC switch is designed and fabricated mainly by a microcontroller and three double poles single throw reed relays.This new switch is introduced to establish a fully automated system for AC-DC measurements through ACDC transfer standards for the first time at the National Institute for standards(N IS)in Egypt.The implemented circuit of theautomatic AC-DC switch and its protection are presented in details.An AC voltage source is calibrated against DC voltagesource by using the demonstrated automatic switch as an application The calibrated voltage ranges are2V,6V,20V and60V as examples.The uncertainty budget is also evaluated for the calibrated values.