Quantitative application on remote sensing of suspended sediment is an important aspect of the engineering application of remote sensing study. In this paper, the Xiamen Bay is chosen as the study area. Eleven differe...Quantitative application on remote sensing of suspended sediment is an important aspect of the engineering application of remote sensing study. In this paper, the Xiamen Bay is chosen as the study area. Eleven different phases of the remote sensing data are selected to establish a quantitative remote sensing model to map suspended sediment by using remote sensing images and the quasi-synchronous measured sediment data. Based on empirical statistics developed are the conversion models between instantaneous suspended sediment concentration and tidally-averaged suspended sediment concentration as well as the conversion models between surface layer suspended sediment concentration and" the depth-averaged suspended sediment concentration. On this basis, the quantitative application integrated model on remote sensing of suspended sediment is developed. By using this model as well as multi-temporal remote sensing images, multi-year averaged suspended sediment concentration of the Xiamen Bay are predicted. The comparison between model prediction and observed data shows that the multi-year averaged suspended sediment concentration of studied sites as well as the concentration difference of neighboring sites can be well predicted by the remote sensing model with an error rate of 21.61% or less, which can satisfy the engineering requirements of channel deposition calculation.展开更多
基金supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2009491711)
文摘Quantitative application on remote sensing of suspended sediment is an important aspect of the engineering application of remote sensing study. In this paper, the Xiamen Bay is chosen as the study area. Eleven different phases of the remote sensing data are selected to establish a quantitative remote sensing model to map suspended sediment by using remote sensing images and the quasi-synchronous measured sediment data. Based on empirical statistics developed are the conversion models between instantaneous suspended sediment concentration and tidally-averaged suspended sediment concentration as well as the conversion models between surface layer suspended sediment concentration and" the depth-averaged suspended sediment concentration. On this basis, the quantitative application integrated model on remote sensing of suspended sediment is developed. By using this model as well as multi-temporal remote sensing images, multi-year averaged suspended sediment concentration of the Xiamen Bay are predicted. The comparison between model prediction and observed data shows that the multi-year averaged suspended sediment concentration of studied sites as well as the concentration difference of neighboring sites can be well predicted by the remote sensing model with an error rate of 21.61% or less, which can satisfy the engineering requirements of channel deposition calculation.