The sensor space high resolution Weighted Subspace Fitting (WSF) algorithm is expanded into beam space in this paper. Beam space WSF algorithm uses beam outputs of array which can be regarded as the outputs of an virt...The sensor space high resolution Weighted Subspace Fitting (WSF) algorithm is expanded into beam space in this paper. Beam space WSF algorithm uses beam outputs of array which can be regarded as the outputs of an virtual array having the same number of elements as the beam number to estimate target directions. In most underwater acoustic systems, the number of beams used for determining the direction of arrival is usually considerably less than that of the sensors, so the computation burdensome is decedent. Computer simulation results show that the beam space WSF algorithm retains the super performance of the sensor space WSF algorithm when applied to the beam outputs of some practical acoustic-receiving array.展开更多
基金National Natural Science Foundation of China !(69802010)
文摘The sensor space high resolution Weighted Subspace Fitting (WSF) algorithm is expanded into beam space in this paper. Beam space WSF algorithm uses beam outputs of array which can be regarded as the outputs of an virtual array having the same number of elements as the beam number to estimate target directions. In most underwater acoustic systems, the number of beams used for determining the direction of arrival is usually considerably less than that of the sensors, so the computation burdensome is decedent. Computer simulation results show that the beam space WSF algorithm retains the super performance of the sensor space WSF algorithm when applied to the beam outputs of some practical acoustic-receiving array.