期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
An Innovative Bias-Correction Approach to CMA-GD Hourly Quantitative Precipitation Forecasts 被引量:4
1
作者 LIU Jin-qing DAI Guang-feng OU Xiao-feng 《Journal of Tropical Meteorology》 SCIE 2021年第4期428-436,共9页
This paper proposes a simple and powerful optimal integration(OPI)method for improving hourly quantitative precipitation forecasts(QPFs,0-24 h)of a single-model by integrating the benefits of different biascorrected m... This paper proposes a simple and powerful optimal integration(OPI)method for improving hourly quantitative precipitation forecasts(QPFs,0-24 h)of a single-model by integrating the benefits of different biascorrected methods using the high-resolution CMA-GD model from the Guangzhou Institute of Tropical and Marine Meteorology of China Meteorological Administration(CMA).Three techniques are used to generate multi-method calibrated members for OPI:deep neural network(DNN),frequency-matching(FM),and optimal threat score(OTS).The results are as follows:(1)The QPF using DNN follows the basic physical patterns of CMA-GD.Despite providing superior improvements for clear-rainy and weak precipitation,DNN cannot improve the predictions for severe precipitation,while OTS can significantly strengthen these predictions.As a result,DNN and OTS are the optimal members to be incorporated into OPI.(2)Our new approach achieves state-of-the-art performances on a single model for all magnitudes of precipitation.Compared with the CMA-GD,OPI improves the TS by 2.5%,5.4%,7.8%,8.3%,and 6.1%for QPFs from clear-rainy to rainstorms in the verification dataset.Moreover,OPI shows good stability in the test dataset.(3)It is also noted that the rainstorm pattern of OPI relies heavily on the original model and that OPI cannot correct for deviations in the location of severe precipitation.Therefore,improvements in predicting severe precipitation using this method should be further realized by improving the numerical model's forecasting capability. 展开更多
关键词 DNN deep-learning bias-correction POST-PROCESSING OTS optimal integration NWP
下载PDF
Bias-Corrected Short-Range Ensemble Forecasts for Near-Surface Variables during the Summer Season of 2010 in Northern China 被引量:2
2
作者 ZHU Jiang-Shan KONG Fan-You LEI Heng-Chi 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第4期334-339,共6页
A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the no... A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble. 展开更多
关键词 short-range ensemble forecast bias-corrected ensemble forecast running mean bias correction near-surface variable forecast
下载PDF
Comparison of Different Confidence Intervals of Intensities for an Open Queueing Network with Feedback
3
作者 Vinayak Kawaduji Gedam Suresh Bajirao Pathare 《American Journal of Operations Research》 2013年第2期307-327,共21页
In this paper we propose a consistent and asymptotically normal estimator (CAN) of intensities ρ1 , ρ2 for a queueing network with feedback (in which a job may return to previously visited nodes) with distribution-f... In this paper we propose a consistent and asymptotically normal estimator (CAN) of intensities ρ1 , ρ2 for a queueing network with feedback (in which a job may return to previously visited nodes) with distribution-free inter-arrival and service times. Using this estimator and its estimated variance, some 100(1-α)% asymptotic confidence intervals of intensities are constructed. Also bootstrap approaches such as Standard bootstrap, Bayesian bootstrap, Percentile bootstrap and Bias-corrected and accelerated bootstrap are also applied to develop the confidence intervals of intensities. A comparative analysis is conducted to demonstrate performances of the confidence intervals of intensities for a queueing network with short run data. 展开更多
关键词 COVERAGE PERCENTAGE Relative COVERAGE Bayesian BOOTSTRAP bias-corrected and ACCELERATED BOOTSTRAP Percentile BOOTSTRAP Standard BOOTSTRAP
下载PDF
Empirical Likelihood for Varying Coefficient EV Models under Longitudinal Data 被引量:1
4
作者 Qiang LIU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2018年第3期585-596,共12页
In this paper, a varying coefficient errors-in-variables model under longitudinal data is investigated.An empirical likelihood based bias-correction approach is proposed. It is proved that the proposed statistics are ... In this paper, a varying coefficient errors-in-variables model under longitudinal data is investigated.An empirical likelihood based bias-correction approach is proposed. It is proved that the proposed statistics are asymptotically chi-squared under some mild conditions, and hence can be used to construct the confidence regions of the parameters of interest. Finite sample performance of the proposed method is illustrated in a simulation study. The proposed methods are applied to an AIDS clinical trial dataset. 展开更多
关键词 varying coefficient EV model longitudinal Data empirical likelihood bias-correction asymptotic normality
原文传递
Confidence interval of intrinsic optimum temperature estimated using thermodynamic SSI model 被引量:1
5
作者 Takaya Ikemoto Issei Kurahashi Pei-Jian Shi 《Insect Science》 SCIE CAS CSCD 2013年第3期420-428,共9页
The intrinsic optimum temperature for the development of ectotherms is one of the most important factors not only for their physiological processes but also for ecolog- ical and evolutional processes. The Sharpe-Schoo... The intrinsic optimum temperature for the development of ectotherms is one of the most important factors not only for their physiological processes but also for ecolog- ical and evolutional processes. The Sharpe-Schoolfield-Ikemoto (SSI) model succeeded in defining the temperature that can thermodynamically meet the condition that at a par- ticular temperature the probability of an active enzyme reaching its maximum activity is realized. Previously, an algorithm was developed by Ikemoto (Tropical malaria does not mean hot environments. Journal of Medical Entomology, 45, 963-969) to estimate model parameters, but that program was computationally very time consuming. Now, investi- gators can use the SSI model more easily because a full automatic computer program was designed by Shi et al. (A modified program for estimating the parameters of the SSI model. Environmental Entomology, 40, 462-469). However, the statistical significance of the point estimate of the intrinsic optimum temperature for each ectotherm has not yet been determined. Here, we provided a new method for calculating the confidence interval of the estimated intrinsic optimum temperature by modifying the approximate bootstrap confidence intervals method. For this purpose, it was necessary to develop a new program for a faster estimation of the parameters in the SSI model, which we have also done. 展开更多
关键词 approximate bootstrap confidence intervals bias-corrected and accelerated bootstrap percentiles development rate temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部