期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators
1
作者 Zhiwei Lin Hui Wang +3 位作者 Tianding Chen Yingtao Jiang Jianmei Jiang Yingpin Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1357-1379,共23页
In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.... In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators. 展开更多
关键词 Reverse path planning Dyna-Q bidirectional search posture angle joint motion
下载PDF
Three Dimensional Laser Point Cloud Slicing Method for Calculating Irregular Volume 被引量:5
2
作者 Bin LI Xiaofa ZHAO +3 位作者 Yong CHEN Junbo WEI Lu WANG Bochao MA 《Journal of Geodesy and Geoinformation Science》 2019年第4期31-43,共13页
Volume parameter is the basic content of a spatial body object morphology analysis.However,the challenge lies in the volume calculation of irregular objects.The point cloud slicing method proposed in this study effect... Volume parameter is the basic content of a spatial body object morphology analysis.However,the challenge lies in the volume calculation of irregular objects.The point cloud slicing method proposed in this study effectively works in calculating the volume of the point cloud of the spatial object obtained through three-dimensional laser scanning(3DLS).In this method,a uniformly spaced sequent slicing process is first conducted in a specific direction on the point cloud of the spatial object obtained through 3DLS.A series of discrete point cloud slices corresponding to the point cloud bodies are then obtained.Subsequently,the outline boundary polygon of the point cloud slicing is searched one by one in accordance with the slicing sequence and areas of the polygon.The point cloud slice is also calculated.Finally,the individual point cloud section volume is calculated through the slicing areas and the adjacent slicing gap.Thus,the total volume of the scanned spatial object can be calculated by summing up the individual volumes.According to the results and analysis of the calculated examples,the slice-based volume-calculating method for the point cloud of irregular objects obtained through 3DLS is correct,concise in process,reliable in results,efficient in calculation methods,and controllable on accuracy.This method comes as a good solution to the volume calculation of irregular objects. 展开更多
关键词 3DLS point cloud volume calculation point cloud slicing method point cloud segmenting method outline boundary polygon bidirectional search of the closest approach amplification effect morphological distortion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部